Simplicial Graviton from Selfdual Ashtekar Variables

Wolfgang Wieland
Friedrich-Alexander-Universität Erlangen-Nürnberg

QG@RRI

Bengaluru, Karnataka, India

05-09-2023

Outline and Motivation

Quantum gravity in finite regions - a paradigm of quasi-local holography.

- It is quasi-local rather than local, because observables are attached to finite regions rather than points on the manifold.
- It is holographic, because evolution is studied through the exchange of charges at the boundary seperating system and environment.
Paradigm connecting research on quantum reference frames, quantum gravity, observables, holography.

In this talk, I will focus on only one recent development: Quasi-local regularization of constraint algebra for selfdual gravity with potential connection to earlier results by A. Ashtekar and M. Varadarajan. Simplicial version of time evolution as spatial diffeomorphism.

[^0]Back to selfdual variables
[Ashtekar (1986)]: general relativity put on the phase space of an $S L(2, \mathbb{C})$ Yang-Mills theory.

$$
\left\{\tilde{E}_{i}{ }^{a}(x), A^{j}{ }_{b}(y)\right\}=8 \pi \mathrm{i} G \delta_{i}^{j} \delta_{b}^{a} \tilde{\delta}^{(3)}(x, y),
$$

a, b, c, \ldots are tangent indices and i, j, \ldots refer to the internal $S L(2, \mathbb{C})$ directions. There are three of them as $S L(2, \mathbb{C})$ is treated here as complexifization of $S U(2)$ (complex structure $-m \rightarrow$ normal vector to Σ).
The constraints are the simplest possible gauge-invariant polynomials on the now complexified phase space.

$$
\begin{aligned}
\text { Gauss constraint: } & \tilde{\mathscr{F}}_{i}=D_{a} \tilde{E}_{i}{ }^{a}=0, \\
\text { Vector constraint: } & \tilde{H}_{a}=F_{a b}^{i} \tilde{E}_{i}^{b}=0, \\
\text { Hamiltonian constraint: } & \tilde{\tilde{H}}=\epsilon_{i}^{l m} F_{a b}^{i} \tilde{E}_{l}{ }^{a} \tilde{E}_{m}^{b} .
\end{aligned}
$$

ADM-type of action, metric on superspace

N.B.: Scalar constraint defines an inverse super-metric $G=\frac{1}{2} \epsilon_{i}{ }^{l m} F_{a b}^{i}[A] \frac{\delta}{\delta A^{i}{ }_{a}} \otimes \frac{\delta}{\delta A^{j}{ }_{b}}$ on configuration space. ADM-type action

$$
S=\int \mathrm{d} t \int_{\Sigma}(\tilde{E}_{i} \underbrace{\underbrace{\left(\frac{\mathrm{~d} t}{} A^{i}{ }_{a}-D_{a} \Lambda^{i}+F^{i}{ }_{a b} N^{b}\right)}-\underset{\sim}{N} \epsilon_{i}{ }^{l m} F^{i}{ }_{a b}[A] \tilde{E}_{l}{ }^{a} \tilde{E}_{m}{ }^{b}) . . ~ . . ~ . ~}_{\frac{D}{\mathrm{~d} t} A^{i}{ }_{a}}
$$

Compare this with the worldline action for $I=1, \ldots, K$ (uncoupled) massless particles

$$
S=\int \mathrm{d} t\left(\sum_{I=1}^{K} p_{\mu}^{I}(t) \frac{\mathrm{d}}{\mathrm{~d} t} q_{I}^{\mu}(t)-\sum_{I=1}^{K} N_{I} g^{\mu \nu}\left(q_{I}(t)\right) p_{\mu}^{I}(t) p_{\nu}^{I}(t)\right) .
$$

Physical spacetimes carve out null geodesic in the space of self-dual connections.

Constraint algebra

All constraints are first-class (as in Yang-Mills). However, also very different from Yang-Mills, as there are structure functions rather than structure constants.

$$
\begin{aligned}
\left\{G_{i}\left[\Lambda^{i}\right], G_{j}\left[\mathrm{M}^{j}\right]\right\} & =-8 \pi \mathrm{i} G G_{i}\left[[\Lambda, \mathrm{M}]^{i}\right], \\
\left\{H_{a}\left[N^{a}\right], H_{b}\left[M^{b}\right]\right\} & =-8 \pi \mathrm{i} G\left(H_{a}\left[[N, M]^{a}\right]-G_{i}\left[F_{a b}^{i} N^{a} M^{b}\right]\right), \\
\left\{H_{a}\left[N^{a}\right], H[N]\right\} & =-8 \pi \mathrm{i} G\left(H\left[\mathscr{L}_{\vec{N}} N\right]+G_{i}\left[\epsilon_{j}^{k i} F_{a b}^{j} \tilde{E}_{k}{ }^{a} N N^{b}\right]\right), \\
\{H[\underset{\sim}{N}], H[\underset{\sim}{M}]\} & =+8 \pi \mathrm{i} G H_{a}\left[\left[\sim_{\sim}^{N}, \underset{\sim}{M}\right]^{a}\right],
\end{aligned}
$$

where e.g. $G_{i}\left[\Lambda^{i}\right]=\int_{\Sigma} \tilde{\mathscr{G}}_{i} \Lambda^{i}$, and $[\underset{\sim}{N}, \underset{\sim}{M}]^{a}=\delta^{i j} \tilde{E}_{i}{ }^{a} \tilde{E}_{j}{ }^{b}\left(\underset{\sim}{N} D_{b} \underset{\sim}{M}-\underset{\sim}{M} D_{b} \underset{\sim}{N}\right)$.
N.B.: Algebra still regular for degenerate geometries (squashed triads) $\frac{1}{3!} \epsilon^{i j k} \sum_{a b c} \tilde{E}_{i}{ }^{a} \tilde{E}_{j}{ }^{b} \tilde{E}_{k}{ }^{c}=0$.

Counting complex degrees of freedom:
Each point x on Σ carries kinematical variables $A_{a}^{i}(x)$ and $\tilde{E}_{i}{ }^{a}(x)$. Kinematical degrees of freedom per points of Σ :

$$
3 \times 3=9 \quad(\text { complex degrees of freedom })
$$

Physical degrees of freedom per points of Σ :

$$
9-3-3-1=2 \quad(\text { complex degrees of freedom })
$$

These are the two modes of polarization of the non-linear graviton.
We have no complete set of Dirac variables that could access these modes at the full non-linear level. Standard constructions of Dirac observables and physical phase space rely on additional auxiliary structures, e.g. boundary conditions, asymptotic falloff conditions, perturbation theory.
N.B.: Phase space is complex, all constraints are analytic functionals on phase space. Going back to metric GR requires additional reality conditions.

Main strategy ahead

All physics relies on truncations. Idea: find a way to isolate the two physical modes at the discretised level.
Basic strategy: introduce simplicial decomposition. Blow up points on the initial manifold and replace them by simplicial building blocks (tetrahedra).

Perhaps overly naïve, but if it works we could expect: each simplicial cell represents a fundamental atom of geometry. Ignoring for a moment additional boundary modes perhaps necessary, each such atom of space is expected to carry two physical modes (four complex phase space dimensions). Thus localizing radiative modes in each simplicial cell.

Step 1: new regularization of the constraints

Lattice and dual lattice in a single cell

Introduce a simplicial discretisation of Σ. Consider a single building block, an elementary tetrahedron $T \subset \Sigma$.

■ Boundary of the tetrahedron consists of four triangles $f^{1}, f^{2}, f^{3}, f^{4}$.

- Each such face f^{I} is dual to a half link γ_{I} connecting the centroid of T with the centroid of f^{I}.
- Boundary links $\gamma_{J I} \subset \partial T$ connect the centroid of f^{I} with the centroid of f^{J} along the boundary of T.
- The dual faces $f_{J K}$ are bounded by the loop $\gamma_{J}^{-1} \circ \gamma_{K J} \circ \gamma_{K}$.

Comments:

- We need to speak about such internal loops (wedge holonomies)—otherwise it is impossible to regularise the field strength $F_{a b}^{i}$ in a given cell T.
- Without wedge holonomies, non-local construction necessary in which the field strength is smeared over a plaquette connecting many tetrahedra.
- We want to avoid such non-local construction, otherwise seems hopeless to do constraint analysis on arbitrary triangulation.

Lattice and dual lattice in a single cell

This is a departure from Regge calculus, where each building block is assumed to be flat. No such assumption here. Hence, there is curvature in each bulding block.

- Bulk holonomies: $h_{I}=\operatorname{Pexp}\left(-\int_{\gamma_{I}} A\right)$.
- Boundary holonomies:

$$
h_{I J}=\operatorname{Pexp}\left(-\int_{\gamma_{I J}} A\right)=g_{J}^{-1} g_{I} .
$$

- Assumption: All curvature concentrated in the bulk. Boundary flatness: $h_{I K} h_{K J} h_{J I}=\mathbb{1}$.
- Bulk curvature:

$$
F_{I J}:=\operatorname{Pexp}\left(-\oint_{f_{I J}} A\right)=h_{J}^{-1} h_{I J} h_{I} .
$$

- Non-abelian Stokes's theorem:

$$
\operatorname{Pexp}\left(-\oint_{\partial f} A\right)=\operatorname{Sexp}\left(-\int_{f} F\right) \approx \mathbb{1}-\int_{f} F^{i} \tau_{i}+\ldots
$$

Fluxes and adapted basis

Besides the holonomies (magnetic fluxes), we have the electric fluxes.

- Ashtekar electric flux:

$$
E_{i}^{I}=\int_{f^{I}}\left(E_{j}\right)_{x}\left[g^{-1}(x) g_{I} h_{I}\right]_{i}^{j} .
$$

- Adapted triad: $u_{1}{ }^{a}=X_{1}^{a}-X_{4}^{a}, \quad u_{2}{ }^{a}=$

$$
X_{2}^{a}-X_{4}^{a}, \quad u_{3}{ }^{a}=X_{3}^{a}-X_{4}^{a} .
$$

- Dual triad: $u^{\mu}{ }_{a}: u_{\alpha}{ }^{a} u^{\alpha}{ }_{b}=\delta_{b}^{a}$.
- Adapted coordinates $\left(u^{1}, u^{2}, u^{3}\right)$ such that tetrahedron is the point set $u^{\alpha}>0$,

$$
\sum_{\alpha=1}^{3} u^{\alpha}<1 .
$$

- Electric and magnetic fluxes:

$$
\begin{aligned}
E_{i}^{1} & \approx-\left.\frac{1}{2}{\underset{\sim}{\epsilon} a b c} u_{2}^{a} u_{3}{ }^{b} u_{\mu}{ }^{c} u^{\mu}{ }_{a} \tilde{E}_{i}^{a}\right|_{c}=-\left.\frac{1}{2}\left(d^{3} u\right)^{-1} u_{a}^{1} \tilde{E}_{i}^{a}\right|_{c} \\
\left.\frac{1}{6} F_{a b}^{i} u_{\alpha}{ }^{a} u_{\beta}{ }^{b}\right|_{c} & \approx F^{i}\left[f_{\alpha \beta}\right]-F^{i}\left[f_{4 \beta}\right]-F^{i}\left[f_{\alpha 4}\right], \text { where: } F^{i}[f]=\int_{f} F^{i}
\end{aligned}
$$

Regularisation of the Gauss constraint

In the continuum, the smeared Gauss constraint is

$$
G_{i}\left[\Lambda^{i}\right]=\int_{\Sigma} \Lambda^{i} D_{a} \tilde{E}_{i}^{a}=0 .
$$

Choose a test function Λ^{i} that vanishes everywhere except in T. At the discretised level, the constraint is then well approximated by the closure constraint in each tetrahedron

$$
G_{i}^{T}\left[\Lambda^{i}\right]=\sum_{I=1}^{4} \Lambda^{i} E_{i}{ }^{I}=0 .
$$

N.B.: If we also impose reality conditions on $E_{i}{ }^{I}$, the closure constraint allows to assign a geometric data (edge lengths) to each tetrahedron via Minkowski theorem.

$$
\text { if } G_{i}^{T}=0 \text { and } E_{i}{ }^{I}=\bar{E}_{i}{ }^{I}: E_{i}{ }^{I}=n_{i}{ }^{I}\left(\left\{\ell_{e}\right\}, R\right) \text { area }\left(\left\{\ell_{e}\right\}\right) .
$$

Regularisation of the vector constraint

In the continuum, the smeared vector constraint is

$$
H_{a}\left[N^{a}\right]=\int_{\Sigma} N^{a} F_{a b}^{i} \tilde{E}_{i}^{b}
$$

- Set $N^{a}=0$ expect in T.

■ Set in T : $N^{a}=N^{\mu} u_{\mu}{ }^{a}{ }^{\prime}, \mu=1,2,3$.
■ Use non-abelian Stokes's theorem

$$
F_{I J}=\operatorname{Pexp}\left(-\oint_{\partial f_{I J}} A\right) \approx \mathbb{1}-\oint_{f_{I J}} F
$$

- Introduce fourth auxiliary direction

$$
N^{4}=-\sum_{\mu=1}^{3} N^{\mu}
$$

- Regularized vector constraint

$$
\int_{T} N^{a} F_{a b}^{i} E_{i}^{b} \approx-4 \sum_{I, J=1}^{4} N^{I} \operatorname{Tr}\left(\tau^{j} F_{I J}\right) E_{j}^{J}
$$

Regularisation of the scalar constraint

The scalar constraint is smeared against an inverse density

$$
H[\underset{\sim}{N}]=\int_{\Sigma} N \epsilon_{i}^{l m} F_{a b}^{i} \tilde{E}_{l}^{a} \tilde{E}_{m}{ }^{b} .
$$

We split this integral into two parts. We assume $\underset{\sim}{N}=0$ outside T. Within T, we regularize it by introducing the smeared quantity

$$
N_{T}:=\left[\int_{T}{\underset{\sim}{N}}^{-1}\right]^{-1},
$$

which is independnet of metric and connection (a c number).
Assuming the fields are slowly varying in T, we obtain the regularized constraint

$$
\int_{T} \underset{\sim}{N} \epsilon_{i}^{l m} F_{a b}^{i} \tilde{E}_{l}{ }^{a} \tilde{E}_{m}{ }^{b} \approx \frac{8}{3} \sum_{I, J=1}^{4} N_{T} \operatorname{Tr}\left(\tau^{j} F_{I J} \tau^{i}\right) E_{i}{ }^{I} E_{j}{ }^{J}
$$

Step 2: additional closure constraint

The commutation relations for the half holonomies and fluxes define the phase space $T^{*} S L(2, \mathbb{C})^{4}$.
Is there a chance that we obtain the correct number of physical modes per lattice site?
The contribution to the symplectic potential from each lattice site is

$$
\Theta_{T}(\delta)=16 \pi \mathrm{i} G \sum_{I=1}^{4} E_{i}^{I} \operatorname{Tr}\left(\tau^{i} h_{I}^{-1} \delta h_{I}\right)
$$

Now all four directions are treated as functionally independent. Yet in the discrete, the tangent indices a, b, c, \ldots refer to a three-dimensional space.
Tension: In the continuum, we have

$$
\Theta_{M}(\delta)=8 \pi \mathrm{i} G \int_{M} \tilde{E}_{i}^{a} \delta A_{a}^{i}
$$

Assuming all discretised constraints are first-class, we would be left with three additional spurious degrees of freedom:

$$
3 \times 4-3-3-1=5=2+3 .
$$

To remove the additional unphysical modes, it seems necessary to add one additional closure constraint.

Lattice and dual lattice in a single cell

Consider the dressed closure constraint (sort-of Bianchi identity?)

$$
\sum_{K=1}^{4} G_{k(K)}:=\frac{1}{4} \sum_{I, K=1}^{4}\left[F_{K I}\right]^{i}{ }_{k} E_{i}{ }^{I} .
$$

- In the continuum limit, this constraint is functionally dependent of the other constraints.
- It becomes proportional to the usual closure constraint.
- $\left[F_{K I}\right]^{i}{ }_{k}$ is the adjoint representation: $h^{-1} \tau^{i} h=[h]^{i} \tau^{j}$ with τ_{i} Pauli matrices.
■ Furthermore, for Regge-like curvature, the dressed closure constraint is again proportional to the usual closure
 constraint:

Regge-like configurations: $\quad E_{i}{ }^{I}=\left[F_{K I}\right]^{i}{ }_{k} E_{i}{ }^{I}$.

All constraints first class

The set of constraints per each tetrahedron is first-class. With constraints:
closure constraint: $G_{i}=\sum_{I=1}^{4} E_{i}{ }^{I}=0$,
dressed closure: $\quad G_{i(K)}=\sum_{I=1}^{4}\left[F_{K I}\right]^{i}{ }_{k} E_{i}^{I}=0$,
vector constraint: $\quad H_{I}\left[N^{I}\right]=-4 \sum_{I, J=1}^{4} N^{I} \operatorname{Tr}\left(F_{I J} \tau^{j}\right) E_{j}^{J}=0, \forall N^{I}: \sum_{I=1}^{4} N^{I}=0$,
scalar constraint: $\quad H=\frac{8}{3} \sum_{I, J=1}^{4} \operatorname{Tr}\left(\tau^{i} F_{J I} \tau^{j}\right) E_{i}{ }^{I} E_{j}{ }^{J}=0$.
For example:

$$
\begin{aligned}
\left\{H_{I}\left[N^{I}\right], H_{J}\left[M^{J}\right]\right\} & =-8 \pi \mathrm{i} G H_{I}[N, M]^{I}+\text { closure constraints, } \\
{[N, M]^{I} } & =\sum_{J=1}^{4}\left(N^{J} \operatorname{Tr}\left(F_{J I}\right) M^{I}-M^{J} \operatorname{Tr}\left(F_{J I}\right) N^{I}\right) .
\end{aligned}
$$

Result relies on two additional constraints

By adding two additional conditions, we obtain a closed algebra:

- dressed closure constraint (a central term): $\sum_{I=1}^{4}\left[F_{K I}\right]^{i}{ }_{k} E_{i}{ }^{I}=0$.
- Boundary flatness: $\varphi_{T}^{*} A=g^{-1} \mathrm{~d} g$.

The reduced phase space has 2×2 complex dimensions, i.e. the simplicial graviton for selfdual gravity.

What about gravity in $2+1$ dimensions?

Test: Repeating the construction for 3d gravity

Three-dimensional (Euclidean) gravity admits formulation in terms of Ashtekar's connection dynamics [A. Ashtekar, R. Loll (1994)]:

- Kinematical phase space of $S U(2)$ gauge connection and electric field: $\left\{\tilde{E}_{i}{ }^{a}(p), A^{j}{ }_{b}(q)\right\}=8 \pi G \tilde{\delta}^{(2)}(p, q)$,
- Constraints just the same as in four-dimensional selfdual theory:
- Gauss: $D_{a} \tilde{E}_{i}{ }^{a}=0$,
- Vector: $F^{i}{ }_{a b} \tilde{E}_{i}{ }^{b}=0$,
- Hamilton: $\epsilon_{i}{ }^{j k} F_{a b}^{i} \tilde{E}_{j}{ }^{a} \tilde{E}_{k}{ }^{b}=0$.

■ No local degrees of freedom: $3 \times 2-3-2-1=0$.

Quasi-local regularization of the constraints

Hamiltonian lattice approach. Introduce triangulation of initial surface M.
Each triangle equipped with phase space $T^{*} S U(2)^{3}$.
As before, we split each simplicial building block, i.e. every triangle \triangle, into smaller wedges $f_{I J}$.

- Wedge holonomies: $F_{I J}=\operatorname{Pexp}\left(-\oint_{f_{I J}} A\right)$.
- Boundary flatness $\operatorname{Pexp}\left(-\oint_{\partial \Delta} A\right)=\mathbb{1}$ does not imply wedge flatness.
- Constraints assume same form as before, but now straight-forward to solve.
- Constraints impose wedge flatness $F_{I J}=\mathbb{1}$.

In three dimensions:

- Closure: $\sum_{I=1}^{3} E_{i}{ }^{I}=0$.
- Dressed closure: $\sum_{I=1}^{3}\left[F_{K I}\right]^{j}{ }_{k} E_{j}{ }^{I}=0$.
- Vector: $\sum_{I, J=1}^{3} \operatorname{Tr}\left(\tau^{i} F_{I J}\right) N^{I} E_{i}{ }^{J}=0, \quad \forall N^{I}: \sum_{I=1}^{3} N^{I}=0$.
- Hamilton: $\sum_{I, J=1}^{3} \operatorname{Tr}\left(\tau^{j} F_{I J} \tau^{i}\right) E_{i}{ }^{I} E_{j}{ }^{J}=0$
N.B. Dressed closure implies $F_{I J}=\exp \left(-\mu^{J} E_{j}{ }^{J} \tau^{j}\right) \exp \left(\mu^{I} E_{i}{ }^{I} \tau^{i}\right)$. Scalar and vector constraint imply, in turn, $\sin \left(\frac{\mu^{I}}{2}\right)=0$, i.e. flatness of wedge holonomies.

The (unique) quantum state Ω_{Δ} for a single triangle Δ that satisfies $\widehat{F_{I J}}\left|\Omega_{\Delta}\right\rangle=\left|\Omega_{\Delta}\right\rangle$ defines the BF vacuum:
$\left\langle h_{1}, h_{2}, h_{3} ; g_{1}, g_{2}, g_{3} \mid \Omega_{\Delta}\right\rangle=\delta_{S U(2)}\left(F_{12}\right) \delta_{S U(2)}\left(F_{23}\right) \delta_{S U(2)}\left(F_{31}\right), F_{I J}=g_{J}^{-1} h_{J}^{-1} h_{I} g_{I}$
The state for an entire triangulation is built by taking the tensor product over all triangles and tracing over boundary modes

$$
|\Omega\rangle=\prod_{e: e d g e s} \int_{S U(2)} d g_{s(e)} \int_{S U(2)} d g_{t(e)} \delta_{S U(2)}\left(g_{s(e)}^{-1} g_{t(e)}\right)\left\langle\left\{g_{e}\right\} \mid \Omega_{\Delta_{1}}, \Omega_{\triangle_{2}}, \ldots\right\rangle .
$$

Conjecture: Same construction possible in $3+1$, but now there are infinitely many allowed physical states $\left|\Omega_{T}^{\sigma}\right\rangle$ labelled by radiative data σ for each tetrahedron. Superpositions of spin networks, "warp-network-states" ...
$\left|\sigma_{1}, \sigma_{2}, \ldots\right\rangle=\prod_{e: e d g e s} \int_{S L(2, \mathrm{C})} d g_{s(e)} \int_{S L(2, \mathrm{C})} d g_{t(e)} \delta_{S L(2, \mathrm{C})}\left(g_{s(e)}^{-1} g_{t(e)}\right)\left\langle\left\{g_{e}\right\} \mid \Omega_{T_{1}}^{\sigma_{1}}, \Omega_{T_{2}}^{\sigma_{2}}, \ldots\right\rangle$

Main task ahead

Gluing

The main open problem is how to glue adjacent tetrahedra.
Necessary to go beyond Hamiltonian analysis for a single building block.
Action for a single tetrahedron

$$
S[\underline{E}, \underline{h}, \underline{N}, \underline{g}]=\int_{\mathbb{R}} \mathrm{d} t\left(\Theta_{\underline{E}, \underline{h}}\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right)-C_{A}(\underline{E}, \underline{h}, \underline{g}) N^{A}\right) .
$$

Coupled action from gluing tetrahedra together

$$
S_{\Delta}[\underline{E}, \underline{h}, \underline{N}, \underline{\lambda}]=\sum_{T \in \Delta_{3}} S\left[\underline{E}_{T}, \underline{h}_{T}, \underline{N}_{T}, \underline{g}_{T}\right]-\sum_{e \in \Delta_{1}^{*}} \lambda_{e}^{i} \operatorname{Tr}\left(\tau_{i} g_{s(e)} g_{t(e)}^{-1}\right)
$$

Summary:
1 New (quasi-local) regularization of the constraints. Possible connections to tensor networks, spinfoams, group field theory, quantum cosmology.
$\boxed{2}$ Regularisation possible only by introducing additional boundary modes (here: edge modes $g_{e} \in S L(2, \mathbb{C})$).

3 Additional closure constraint necessary:

- Otherwise algebra does not close
- Otherwise counting does not match two physical modes of the continuum
4 In three spacetime dimensions, construction agrees with known results [B. Dittrich, M. Geiller, BF vacuum (2014)].

Main open problems:
1 Connection to real variables. Reality conditions. Barbero-Immirzi parameter. Strategy:

- Momentum shifted: $\tilde{E}_{i}{ }^{a} \rightarrow \frac{\beta+\mathrm{i}}{\mathrm{i} \beta} \tilde{\Pi}_{i}{ }^{a},\{\Pi, A\}=1=\{\bar{\Pi}, \bar{A}\}$.
- Reality conditions: $\frac{\beta}{\beta+\mathrm{i}} \tilde{\Pi}_{i}{ }^{a}+\mathrm{cc} .=0$.
- Constraints: $H_{\beta}=\frac{\beta}{\beta+\mathrm{i}} H_{\mathbb{C}}+\mathrm{cc} .=0$.

2 Gluing of adjacent tetrahedra.
3 Matter couplings.
4 Connection to GFTs, spinfoams.
5 ...

[^0]: *Laurent Freidel, Marc Geiller, ww, Corner symmetry and quantum geometry, Springer Handbook od Spacetime (2023), arXiv: 2302.12799.
 *ww, Simplicial Graviton from Selfdual Ashtekar Variables (2023), arXiv:2305.01803.
 *Abhay Ashtekar, Madhavan Varadarajan, Gravitational dynamics: A novel shift in the Hamiltonian paradigm, Universe 7, 13 (2021), arXiv: 2012.12094.
 *Valentin Bonzom, Laurent Freidel, The Hamiltonian constraint in 3d Riemannian loop quantum gravity, Class. Quant. Grav. 28 (2011), arXiv: arXiv:1101.3524.

