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There is a new nascent paradigm in quantum gravity, the paradigm of
quasi-local holography.

■ It is quasi-local rather than local, because observables are attached to
finite regions rather than points on the manifold.

■ It is holographic, because evolution is studied through the exchange
of charges at the boundary seperating system and environment.

Nascent paradigm and nascent community connecting research on
quantum reference frames, quantum gravity, observables, holography.

Outline
1 Motivation: open systems and quasi-local holography

2 Metriplectic geometry for gravitational subsystems

3 Decoupling limit for edge modes and boundary charges
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1. Motivation: open systems and quasi-local
holography



In gravity, all systems are open

All physics relies on truncations. We separate systems from the
environment including observer external. System evolution characterized
by relatively small number of coarse-grained observables.

■ No gravity shields. No gravity mirrors. No
obvious way to isolate subsystems on
entire phase space.

■ No obvious coarse-graining on the
gravitational phase space. Averaging
problem in cosmology.

■ No global Dirac observables on the entire
phase space of the theory.

environment

tim
e

system
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No integrability of charges if the system is open

■ In gravity, time evolution t → t+ ε
can be understood as a large gauge
transformation.

■ Holography suggests to expect that
the Hamiltonian is the generator for
such a gauge transformation:

H[Σ] ≡ Pξ[Σ]
?
=

∮
∂Σ

d2va ξbTab[?].

Σ

Σflux

vs.

N

2

■ We assume that Pξ generates the symmetry algebra{
Pξ, Pξ′

}
= −P[ξ,ξ′] + c[ξ, ξ′].

■ However, that’s at odds with the fact that a system may loose mass
via gravitational radiation

d

dt
Mc2 =

d

dt
H = {H,H} = 0,

= − 1

4πG

∮
S2
t

d2Ω |σ̇0|2 ≤ 0.

 �

■ How to deal with this situation? The system is open, no Hamiltonian.
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Three possible viewpoints

1 There is no problem: Open systems interact with their environment.
So no surprise that there is no Hamiltonian that would measure the
gravitational energy in a finite region. End of story.

2 Treat the system as explicitly time-dependent.
- Time dependence induced by the choice of (outer) boundary conditions.
- Hamiltonian field equations modified (contact geometry).

d

dt
Ft =

{
H,Ft

}
+

∂

∂t
Ft.

- By fixing the outgoing flux, radiative data no longer free (highly non-local
constraints).

- Resulting phase space (on which this Hamiltonian operates) is the phase
space of edge modes alone. Seems too restrictive, less useful.

3 Metriplectic geometry
- New algebraic approach. New bracket. But many properties of Poisson
manifolds lost.

- Noether charges generate evolution for generic vector fields.
- Takes into account dissipation.
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Bulk plus boundary action

General action for coupled bulk plus boundary field theory

S =

∫
M

L[Φ, dΦ] +

∫
B

ℓ[Φ, φ, dφ|σ].

Fundamental configuration variables:
- bulk variables: Φ ∈ Ω|Φ|(M : Vbulk),
- bulk variables: φ ∈ Ω|φ|(M : Vbndry),
- boundary sources: σ, δ[σ] = 0,
- Covariance: for every diffeomorphism α ∈ Diff(M : M).

L
[
α∗Φ, α∗dΦ

]
(x) = L

[
Φ, dΦ

](
α(x)

)
,

ℓ
[
α∗Φ, α∗φ, α∗dφ

∣∣α∗σ
]
(x) = ℓ

[
Φ, φ, dφ

∣∣σ](α(x)).
In 2 + 1, the boundary source is simply the conformal metric σ ≡ √

qqab. In higher
dimensions, σ describes also the flux of gravitational radiation crossing the
boundary.
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Bulk plus boundary field equations

Bulk kinetic momentum: ΠΦ := dΦ,
Boundary kinetic momentum: πϕ := dϕ,
Pre-symplectic currents:

Θbulk(δ) = (−1)d−|Φ| ∂L

∂ΠΦ
∧ δΦ ≡ PΦ ∧ δΦ,

Θedge(δ) = (−1)d−|φ| ∂ℓ

∂πφ
∧ δφ ≡ pφ ∧ δφ,

Pre-symplectic structure on a partial Cauchy surface Σ,

ΘΣ =

∫
Σ

PΦ ∧ dΦ+

∮
∂Σ

pφ ∧ dφ.

Variation of the action

δ[S] = ΘΣ+(δ)−ΘΣ−(δ) +

∫
B

Θsource(δ) + EOM.

9 / 29



Quasi-Hamiltonian

Pre-symplectic structure on a partial Cauchy surface Σ,

ΘΣ =

∫
Σ

PΦ ∧ dΦ+

∮
∂Σ

pφ ∧ dφ,

ΩΣ = dΘΣ.

Quasi-Hamiltonian via Legendre transformation

Hξ[Σ] = ΘΣ(Lξ)−
∫
Σ

ξ⌟L+

∮
∂Σ

ξ⌟ℓ =
∮
∂Σ

qξ.

environment

tim
e

system

Σ−

Σ+ σ

Hamiltonian depends on boundary sources

δ [Hξ[Σ]] = −ΩΣ(Lξ, δ) +Hδξ[Σ] +

∮
∂Σ

ξ⌟Θsource(δ).

Too restrictive—constraints (all) radiative data on Σ.
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2. Metriplectic approach



Metriplectic geometry

Even dimensional manifoldP, equipped with a pre-symplectic two-form
Ω(·, ·) ∈ Ω2(P) and a signature (p, q, r)metric tensor G(·, ·).

A vector field XF is a (right) Hamiltonian vector field of some (gauge
invariant) functional F : P → R on (P,Ω, G) iff

∀δ ∈ TP : δ[F ] = Ω(δ,XF )−G(δ,XF ).

The Leibniz bracket between two such functionals is given by

(F,G) = XF [G].

The metric on phase space encodes dissipation

d

dt
H = (H,H) = −G(XH ,XH).

*Morrison; Kaufman (1982-); Grmela, Göttinger (1997); Guha (2002); Holm, Stanley (2003);...
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Metriplectic geometry and extended phase space

Following Freidel, Ciambelli, Leigh, we work on an extended
pre-symplectic phase space.
A point on the extended pre-symplectic phase space is labelled by a
Einstein metric gab and choice of coordinate functions xµ.
Maurer –Cartan form for diffeomorphisms

X
a =

[ ∂

∂xµ

]a
dxµ.

Extended pre-symplectic current

δ[L] ≈ d[ϑ(δ)],

ϑext = ϑ−ϑ(LX) +X⌟L = ϑ−dqX.

Noether charge and Noether charge aspect

QX =

∮
∂Σ

qX =

∫
Σ

(
ϑ(LX)−X⌟L

)
.

*L. Freidel, A canonical bracket for open gravitational system, (2021), arXiv:2111.14747.
*L. Ciambelli, R. Leigh, Pin-Chun Pai, Embeddings and Integrable Charges for Extended Corner Symmetry,
Phys. Rev. Lett. 128 (2022), arXiv:2111.13181.
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Field dependent vector fields

The coordinate functions xµ : U ⊂ M → R4 are now part of phase space.

Variations of coordinate functions will only contribute a corner term to
the extended pre-symlpleictc two-form.

Vector fields that are determined by their component functions ξµ(x)
become field dependent vector fields.

ξa = ξµ(x)∂a
µ,

δ[ξa] = [X(δ), ξ]a.
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Metriplectic structure

Extended pre-symplectic structure on the covariant phase space [Freidel;
Ciambelli, Leigh]

Ωext(δ1, δ2) = Ω(δ1, δ2) +Q[X(δ1),X(δ2)] +

∮
∂Σ

X(δ[1)⌟ϑ(δ2])

Super metric on phase space [Viktoria Kabel, ww]

G(δ1, δ2) = −
∮
∂Σ

X(δ(1)⌟ϑ(δ2))

Leibniz bracket on extended phase space,

δ[F ] = Ωext(δ,XF )−G(δ,XF ),

(F,G) = XF [G].
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Noether charge and Hamiltonian vector fields

On the extended phase space, the Lie derivativeLξ is a Hamiltonian
vector field with respect to the Leibniz structure.

The corresponding generator is the Noether charge,

δ[Qξ] = Ωext(δ,Lξ)−G(δ,Lξ).

Leibniz bracket captures dissipation

(Qξ, Qξ) = −
∮
∂Σ

ξ⌟ϑ(Lξ).

But violates Jacobi identity and skew-symmetry of Poisson bracket

(A, (B,C)) + (B, (C,A)) + (C, (A,B)) ̸= 0,

(A,B) ̸= (B,A).
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3. Decoupling limit for edge modes and boundary
charges



Utility of decoupling limits

Instead of studying edge modes and boundary charges at full
non-perturbative level, we consider a simplified problem.
Bulk plus boundary phase space in a decoupling limit ℓ =

√
8πG → 0.

■ Decoupling limits are useful to understand constituents of phase
space in a situation in which it is hard to understand the coupling
between all modes of a theory at full non-perturbative level.

■ It is a way to linearize phase space. Work on tangent space TPP of
phase space in a neighbourhood of a fixed solution P .

■ A decoupling limit does not change the size of phase space. It can
only change the Hamiltonian and how the modes interact.

■ Widely used in e.g. massive gravity.

Apply this technique to bulk and boundary phase space of gravity.

*C. de Rham, Massive Gravity, Living Rev. Rel. (2014), arXiv:1401.4173.
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First-order variables, action and phase space

Action for the tetrad and the connection

Sgrav[A, e] =
1

16πG

∫
M

∗(eα ∧ eβ) ∧ Fαβ [A].

Coupled to N point particles (caveat: infinite energy density)

S
[
A, e, {γi, Ni, pi}Ni=1

]
=

N∑
i=1

∫
γi

(
piαe

α − Ni

2

(
piαp

α
i −m2

i

))
,

Symplectic current at non-perturbative level:

ϑabc(δ) =
3

16πG
ϵαβγδ e

α
[ae

β
bδA

γδ
c] +

N∑
i=1

∫
γi

dτ δ̃
(4)

γi(τ)
∂d
τ ε˜dabc pifδγf

i ,

where δγa is the variation of the path.
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Modes of empty space

Minkowski metric is a solution to the vacuum Einstein equations. There
are infinitely many Minkowski geometries

ηab = ηµν∂aX
µ∂bX

ν .

Quantum Minkowski space and quantum reference frames {Xµ} are two
sides of the same coin.
Minkowski solution for tetrad and connection

eα = Λα
µdX

µ, Xµ : M → R4,

Aα
β = Λα

µdΛ
µ

β , Λα
µ : M → SO(1, 3),

Are they all gauge equivalent?
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Perturbation theory
Perturbations around Minkoswki space

eα = Λα
µ

(
dXµ + fµ),

Aα
β = Λα

µdΛ
µ

β + Λα
µ∆

µ
νΛ

µ
β .

Formal power expansion with respect to the coupling constant

fµ =
√
8πG (1)fµ + 8πG (2)fµ + . . . ,

∆µ
ν =

√
8πG (1)∆µ

ν + 8πG (2)∆µ
ν . . .

First order describes free radiation field. Imposing gauge conditions for
(1)fµ = (1)fµ

νdX
ν to bring perturbation into the standard form

(1)fµν =
1

(2π)
3
2

∫
d3k

2|⃗k|

(
mµmν a+(k⃗)e

ikµXµ

+ m̄µm̄ν a−(k⃗)e
ikµXµ

+ cc.
)

Second-order perturbation describes Coulombic fields sourced by
effective stress energy tensor (matter+radiation).

∗
[
d(2)∆

]µ
ν
∧ dXν = (2)Tµ + (2)tµ,

d(2)fµ + (2)∆µ
ν ∧ dXν = (2)θµ,
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Bulk plus boundary phase space

Perturbative expansion of the pre-symplectic two-form wrt. the coupling
constant ℓ =

√
G in regionD:

■ Bulk plus boundary sympletic structure

ΩD = Ωmatter
D +Ωrad

D +Ω∂D +O(ℓ).

■ Matter contribution

Ωmatter
D =

∑N
i=1 dp

i
µ

(
dγµ

i + dXµ
∣∣
γi∩D

)
.

■ Radiation modes

Ωrad
D =

∫
D

∗
(
dX[µ ∧ D

(1)fν]

)
∧ D

(1)∆µν .

■ Boundary modes

Ω∂D =

∮
∂D

dPµ dXµ−1

2

∮
∂D

[
dSµ

ν m
ν
µ +

1

2
Sµ

ν [m,m]νµ

]

Reference Frames at the Boundary

γ

Xμ ∘ γ

Xμ

"
∂"

Λμν

"′ 

Ω∂" = ∮∂"
dPμdXμ − 1

2 ∮∂" [dSμ
νmν

μ + 1
2 Sμ

ν [m, m]ν
μ]

Lorentz frames

m = (dΛ−1)Λ
coordinate fields

Lorentz Frames

✦  render the  symplectic form invariant under Lorentz transformations


✦  provide internal reference frame through dressings s.a. Λ μ
α Fα

βΛβ
ν
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Boundary currents

■ Maurer Cartan forms in field space:

m
µ
ν = dΛ µ

α Λα
ν , X

a =

[
∂

∂Xµ

]a

dXµ

■ Field space differential: Dfµ = dfµ −LXf
µ

■ Boundary spin current

Sµν :=
1

8πG
φ∗

∂D

[
∗
(
dX[µ ∧ dXν]

)
+ 16πG∗

(
dX[µ ∧ (2)fν]

) ]
■ Boundary momentum current

Pµ := φ∗
C

((
∗(2)∆µν

)
∧ dXν

)
.

■ Angular momentum current:

Jµν = 2P[µXν] + Sµν .

Reference Frames at the Boundary

γ

Xμ ∘ γ

Xμ

"
∂"

Λμν

"′ 

Ω∂" = ∮∂"
dPμdXμ − 1

2 ∮∂" [dSμ
νmν

μ + 1
2 Sμ

ν [m, m]ν
μ]

Lorentz frames

m = (dΛ−1)Λ
coordinate fields

Lorentz Frames

✦  render the  symplectic form invariant under Lorentz transformations


✦  provide internal reference frame through dressings s.a. Λ μ
α Fα

βΛβ
ν
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Bulk symplectic structure

Creation and annihilation operators for radiation field{
as(k⃗), ās′(k⃗

′)
}
= 2i|⃗k|δss′δ(3)(k⃗ − k⃗′) +O(

√
8πG), s, s′ ∈ {±}.

Fock vacuum
as(k⃗)

∣∣0⟩ = 0.

Kinematical bulk and boundary state space

KD = H
matter
D ⊗H

rad
D︸ ︷︷ ︸

Hbulk

⊗H
bndry
∂D .
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Boundary symplectic structure

At finite distance with coordinates on the sphere e.g. ζ⃗ = (z, z̄), we obtain
the boundary phase space{

Pµ(ζ⃗), X
ν(ζ⃗′)

}
= δνµδ̃C(ζ⃗, ζ⃗

′),{
Sµν(ζ⃗),Λ

α
ρ(ζ⃗

′)
}
= +2 ηρ[µΛ

α
ν](ζ⃗)δC(ζ⃗, ζ⃗

′),{
Sµν(ζ⃗), Sµ′ν′(ζ⃗′)

}
= −4 δρ[µδ

σ
ν]ησσ′δσ

′
[µ′δρ

′

ν′]S̃ρρ′(z)δC(ζ⃗, ζ⃗
′),

Still need to impose constraints that link boundary currents to the fields
in the bulk, i.e. a residue of the Wheeler–DeWitt equation. Infinitely many
bulk–boundary constraints—conservation laws in any direction

Cµ = Pµ − φ∗
C

((
∗(2)∆µν

)
∧ dXν

)
= 0.

Similar spin constraints Cµν = −Cνµ for internal Lorentz rotations.
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Relation to asymptotic symmetries

At spacelike infinity ρ =
√

XµXµ → ∞, algebra of currents simplifies, e.g.
{Pµ(ζ⃗), Pν(ζ⃗)} = 0.
Conjugate variable, i.e. embedding functions Xµ(ζ), diverge.

Regularisation
■ introduce fiducial coordinate frame Xµ

o kept fixed δXµ
o = 0

■ embedding functions

Xµ(ζ⃗) = Ωµ
νX

ν
0 + Qµ(ζ⃗)︸ ︷︷ ︸
angle-dependent translation

.

■ Qµ(ζ⃗) generates supertranslations
■ Ωµ

ν generates global rotations
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Quantum reference frames for asymptotic symmetries

■ Kinematical states:

Ψ =
∑
i

Ψbulk
i [Qi,Ωi]⊗ |Qi,Ωi⟩

■ Projector onto physical states

P =

∫
DN exp(−iNµCµ)

■ Defines multi-fingered boundary
Schrödinger equation

iℏ δ

δQµ
Ψ[Q,Ω] = HµΨ[Q,Ω]

■ Similar for internal and global Lorentz
transformations

∂"

γ

"′ 

"

Implications for the Quantum Theory

✦ Separation of classical phase space  partition of 
kinematical Hilbert space as 

→

ℋmatter" ⊗ ℋrad"
ℋbulk

⊗ ℋboundary
∂"

N

⨂
i=1

ℋi

tensor product of one- 
particle Hilbert spaces

Ωmatter" =
N

∑
i=1

dpi
μDqμ

i

canonical commutation relations 
for dressed position implied by 
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Summary



Summary

We discussed:

1 In gravity, local subsystems are always open systems. Metriplectic
geometry provides new framework to think about open systems
from algebraic perspective.

2 Edge modes, Coulombic fields and radiation field in linearised gravity.
3 Multi-fingered Schrödinger equation at the boundary of spacetime.
4 Sending boundary to infinity⇝ quantum reference frames for
asymptotic symmetries.
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