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In gravity, every subsystem is an open system



Outline

We are witnessing a shift of perspective (at this conference) from global

aspects of quantum gravity to a more local description of gravitational

subsystems [Freidel, Pranzetti, Barbero, Campiglia, Geiller, Carrozza,

Hoehn, Livine, Lewandowski, Odak, Margalef, Peraza, Schiavina, ww,...].

I will pick two results of the programme thus far.

1 Immirzi parameter, radiative phase space on the lightcone

2 Metriplectic geometry for gravitational subsystems

*ww, Gravitational SL(2, R) Algebra on the Light Cone, JHEP 57 (2021), arXiv:2104.05803.
*Viktoria Kabel and ww, Metriplectic geometry for gravitational subsystems, (2022), arXiv:2206.00029.
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Immirzi parameter, boundary symmetries on the

lightcone



Null surface geometry

Signature (0++)metric.
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Radiative modes from Holst action [ww2021]

Kinematical phase space for radiation: Pkin = Pabelian × T ∗SL(2,R).

ΘN =
1

8πG

∫
N

d2vo ∧
[
pKdK̃ +

1

γ
Ω2

dΦ̃ + Π̃i
j

[
SdS−1]j

i

]
+ corner term.

Abelian variables:

U(1) connection: Φ̃, area: Ω2 d2vo, lapse: K̃ := d̃U, expansion: pK .

Upon imposing 2nd-class constraints: Dirac bracket for radiative modes{
Sim(x), Sjn(y)

}∗
= −4πGΘ(Ux, Uy) δ(2)(~x, ~y) Ω−1(x) Ω−1(y)

×
[
e−2 i (∆(x)−∆(y))[XS(x)

]i
m

[
X̄S(y)

]j
n

+ cc.

]
.

Gauge symmetries:

1 U(1) gauge symmetry with U(1) holonomy h(x) = e−i∆(x)

2 vertical diffeomorphisms along null generators
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Metriplectic geometry for gravitational subsystems



Subsystems as evolving regions in space

To understand the time evolution of a gravitational subsystem,

two choices must be made.

� Choice of time: A choice must be made for

how to extend the boundary of the partial

Cauchy surface Σ into a worldtubeN.

� A choice must be made how to treat the

flux of gravitational radiation across the

worldtube of the boundary. Flux drives the

time-dependence of the system.

� Metriplectic geometry is a novel algebraic

framework to tackle these issues.

Σ

Σflux

vs.

N

2

N.B.: In spacetime dimensions d < 4, there are no gravitational waves, and we can

forget about the second issue. The Hamiltonian will be automatically conserved.
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In Hamiltonian systems, energy is conserved

Symplectic potential and volume-form on phase space

Θ = p dq, Ω = dp ∧ dq.

Hamilton equations

Ω
(
δ,

d

dt

)
= δp q̇ − ṗ δq =

= δp
∂H

∂p
+
∂H

∂q
δq = δH.

The Hamiltonian is conserved under its own flow

d

dt
H = Ω

( d

dt
,

d

dt

)
= 0.

If we insist that there is a Hamiltonian that drives the evolution in a finite

region, the standard approach is too restrictive to account for dissipation.
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Three possible viewpoints

1 There is no problem: Open systems interact with their environment.

There is no Hamiltonian that would be measure the gravitational

energy in a finite region.

2 Treat the system as explicitly time-dependent.

- Time dependence induced by the choice of (outer) boundary conditions.

- Hamiltonian field equations modified (contact geometry).

d

dt
Ft =

{
H,Ft

}
+

∂

∂t
Ft.

- By fixing the outgoing flux, radiative data no longer free (highly non-local

constraints).

- Conjecture: Resulting phase space (on which this Hamiltonian operates)

is the phase space of edge modes alone. Seems too restrictive, less useful.

3 Metriplectic geometry

- New algebraic approach. New bracket. But many properties of Poisson

manifolds lost.

- Noether charges generate evolution for generic vector fields.

- Takes into account dissipation.
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Metriplectic geometry

work with Viktoria Kabel



Metriplectic geometry

Even dimensional manifoldP, equipped with a pre-symplectic two-form

Ω(·, ·) ∈ Ω2(P) and a signature (p, q, r)metric tensor G(·, ·).

A vector field XF is a (right) Hamiltonian vector field of some (gauge
invariant) functional F : P → R on (P,Ω, G) iff

∀δ ∈ TP : δ[F ] = Ω(δ,XF )−G(δ,XF ).

The Leibniz bracket between two such functionals is given by

(F,G) = XF [G].

The metric on phase space encodes dissipation

d

dt
H = (H,H) = −G(XH ,XH).

*Morrison; Kaufman (1982-); Grmela, Göttinger (1997); Guha (2002); Holm, Stanley (2003);...
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Metriplectic geometry and extended phase space

Following Freidel, Ciambelli, Leigh, we work on an extended

pre-symplectic phase space.

A point on the extended pre-symplectic phase space is labelled by a

Einstein metric gab and choice of coordinate functions x
µ
.

Maurer –Cartan form for diffeomorphisms

X
a =

[ ∂

∂xµ

]a
dxµ.

Extended pre-symplectic current

δ[L] ≈ d[ϑ(δ)],

ϑext = ϑ−ϑ(LX) + XyL = ϑ−dqX.

Noether charge and Noether charge aspect

QX =

∮
∂Σ

qX =

∫
Σ

(
ϑ(LX)−XyL

)
.

*L. Freidel, A canonical bracket for open gravitational system, (2021), arXiv:2111.14747.
*L. Ciambelli, R. Leigh, Pin-Chun Pai, Embeddings and Integrable Charges for Extended Corner Symmetry,

Phys. Rev. Lett. 128 (2022), arXiv:2111.13181.
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Field dependent vector fields

The coordinate functions xµ : U ⊂M → R4
are now part of phase space.

Variations of coordinate functions will only contribute a corner term to

the extended pre-symlpleictc two-form.

Vector fields that are determined by their component functions ξµ(x)
become field dependent vector fields.

ξa = ξµ(x)∂aµ,

δ[ξa] = [X(δ), ξ]a.
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Metriplectic structure

Extended pre-symplectic structure on the covariant phase space [Freidel;

Ciambelli, Leigh]

Ωext(δ1, δ2) = Ω(δ1, δ2) +Q[X(δ1),X(δ2)] +

∮
∂Σ

X(δ[1)yϑ(δ2])

Super metric on phase space [Viktoria Kabel, ww]

G(δ1, δ2) = −
∮
∂Σ

X(δ(1)yϑ(δ2))

Leibniz bracket on extended phase space,

δ[F ] = Ωext(δ,XF )−G(δ,XF ),

(F,G) = XF [G].
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Noether charge and Hamiltonian vector fields

On the extended phase space, the Lie derivativeLξ is a Hamiltonian

vector field with respect to the Leibniz structure.

The corresponding generator is the Noether charge,

δ[Qξ] = Ωext(δ,Lξ)−G(δ,Lξ).

Leibniz bracket captures dissipation

(Qξ, Qξ) = −
∮
∂Σ

ξyϑ(Lξ).

But violates Jacobi identity and skew-symmetry of Poisson bracket

(A, (B,C)) + (B, (C,A)) + (C, (A,B)) 6= 0,

(A,B) 6= (B,A).
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Summary



Summary

We discussed two results:

1 Immirzi parameter mixes U(1) frame rotations and dilations on the
null cone. Provides a geometric explanation for LQG discreteness
of geometry.

2 New bracket: Leibniz bracket consists of skew-symmetric-symmetric

(symplectic) and symmetric (metric) part. Symmetric part is a corner

term that describes dissipation.
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