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Introduction and Motivation



Why quantum gravity in finite regions? Different views:

m Mere gauge fixing: Represent
diffeomorphism equivalence class of Uil

states [Uy] by states on the light cone.

m Coarse graining: Build observables by
successively gluing gravitational 7,

subsystems.

m Soft modes/edge modes: In gravity, energy, momentum, angular
momentum, center of mass, supertranslations ... are analogous to
charge in QED. Do we have superpositions of such charges in nature?
Can we study such charge superpositions in the lab? Help us
understand black hole information loss?

[Strominger, Perry; Godazgar, Harlow, Wu; Prabhu, Chandrasekaran, Flanagan, Bonga; Bodendorfer, Thiemann, Thurn; Sahimann; Krasnov, Ashtekar,
Beetle, Krishnan, Corichi, Carlip, Giddings, Freidel, Donnelly, Speranza, Riello, Geiller, Livine, Dittrich, Pranzetti, Grumiller, Seraj, Barnich, Compere,...]
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Gravity in terms of differential forms

To understand how gravity couples to boundaries, it is useful to work with
differential forms rather than tensors since there is a natural notion of
projection onto the boundary, namely the pull-back ¢* : T*M — T*(0M),

which does not require a metric.
Fundamental configuration variables
Gab = "la,@eaaeﬁbv
VAw* =dAw® + A% AP
Palatini action

S[A, ] = —

167G

/ s(ea A eg) A F*P[A] + boundery terms.
M NS~

Sas
Symplectic potential

Oy = ﬁ /z; *¥Xap A dA*? 4 corner terms.
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Charges and symmetries 1/2

Two kinds of gauge symmetries: diffeomorphisms and internal Lorentz
transformations.
Lorentz transformations

5A[6a] = Aageﬁ, Aaﬂ = —Aga
51\[14}15] = "‘71\(Xﬂ.

Lorentz charges are integrable at full non-perturbative level.
Qs (6/\7 6) |EOM = _6[QA]

1
Y= YasAP.
QA[ ] 167G 62* s

NB: Such Lorentz charges do not exist in metric gravity (on the ADM phase space).
Physically meaningful perhaps only if we add fermions (defects of torsion).

[Freidel, Donnelly, Speranza, Riello, Geiller, Speziale, Paoli, Oliveri, ...]
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Charges and symmetries 2/2

Two kinds of gauge symmetries: diffeomorphisms and internal Lorentz
transformations.

Base diffeomorphisms lifted upwards into the Lorentz bundle
55[ = V(€ae”) +£a(V A e,
0e[A%] = E1F%.

Diffeomorphism charges
Q= (0¢,0) | yop = 167rG }{ €% Sap NIA™ £ —5[P].

Trivially integrable at linear order in perturbations
€a=°a+fa_oa+faﬁéﬁa fap = f8a,
P E [ 8]
<=5 €0+ Fas n T

NB: for an asymptotic time translation €% = [3—26] a, the linearised charge P
returns the ADM mass for a linearised solution f,s = 6(r~!) around 8~ = dz*.
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m In gravity, time evolution ¢t — ¢t 4+ ¢ can

be understood as a large gauge

transformation. fu o
B It seems reasonable to expect the

Hamiltonian is the generator for such

a gauge transformation:

H[S) = P[x] = 7{) Ed%“ ETo[7).

m We assume that P: generates the symmetry algebra

{Pe, Per} = =Ple.en + [, €.
m However, that's at odds with the fact that a system may loose mass
via gravitational radiation
d d

—Mc*=—H={H H) =

1 20y 102
=—— d°Q <o.
47rG?{;;z o7 =

m ... unless, we allow for an explicit time dependence in the
Hamiltonian ...



Subsystems as evolving regions in space

To characterise a gravitational subsystem,
two choices must be made.

B A choice must be made for how to extend
the boundary of the partial Cauchy
hypersurface ¥ into a worldtube /.

B A choice must be made for what is the flux
of gravitational radiation across the vS.
worldtube of the boundary, i.e. a
(background field, c-number) that drives
the time-dependence of the Hamiltonian.

N.B.: In spacetime dimensions d < 4, there are no gravitational waves, and we can
forget about the second issue. The Hamiltonian will be automatically conserved.
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Bulk plus boundary field theory



Bulk plus boundary action

General action for coupled bulk plus boundary field theory

S:/J”L[<I>,d<1>]+/ga€[@,<p,d<p|a].

Fundamental configuration variables:
- bulk variables: ® € QI®I( 4 : Vi),
- bulk variables: ¢ € QPN( : Vinary),
- boundary sources: o,
- Covariance: for every diffeomorphism « € Diff (/4 : .%).

L[a"®,a"d®](z) = L[®,d®] (a(z)),
L@, 0" p,a"dp|a’ o] (x) = €[, ¢,dp|o] (a(z)).
In 2 + 1, the boundary source is simply the conformal metric o = ,/gg?®. In higher

dimensions, o describes also the flux of gravitational radiation crossing the
boundary.
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Bulk plus boundary field equations

Bulk kinetic momentum: Ils := d®,
Bulk variations:

oL oL
O[L] =: 7 ANOP + olla

= (BEOM)(6) + d[©pux(9)]

A 6llg =

Field equations and pre-symplectic current:

(EOM)(8) = 8L —(—1)* "I’|d[8aL@]] A 50,
Opuir(0) = (— )d |¢|86L ANS® = Py A 5D.
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Bulk plus boundary field equations

Boundary kinetic momentum: m, := dé¢,
Bulk variations:

5[0 = %M@JFS—ZA +88—£/\6 +g—§/\50.

= —@glue(ts) + (eom)(d) - d['ﬂ(é)] + esource((s)-

Boundary field equations and pre-symplectic currents:

86

(com)(8) = | 2 4 (<)) I#la] (j’i]] A b,

9(6) = (1 >d ol 22

Aw P N dep.
Gluing conditions: linking boundary field theory to the field theory in the bulk

at % : ebnd'ry((s) = ®glue(6)-
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Quasi-Hamiltonian

Pre-symplectic structure on a partial Cauchy surface ¥ anchored at the
boundary % : & D 9%,

@zz/Pq>/\dI<I’+7{ pe A dy,
b %
Qs = dOx.

Quasi-Hamiltonian via Legendre transformation

He[S] = On(Z) — /2 €L+ i et

Hamiltonian depends on boundary sources

S [He[X]] = — Qs (Ze, 8) + Hoe[X] + - €O source(d).
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Example: 3d gravity with conformal boundary conditions

Bulk plus boundary action:

S[A,e|§]=%/Jﬂei/\Fi[w]—%/%[fAdzADwéA—cc.]

- bulk variables: triad ¢! and connection «?,
H . FA

- boundary variables: ¢4,

- boundary sources: ¢ = d=.

Bulk plus boundary field equations
Fi = dwz —|— %Gijkwj A wk = 0,
T =de® + eijkwj Aek = 0,
92DYE =0 K, =0,

Gluing condition

one =2rG P o 5" dz + ce.
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Is there a phase space where H is integrable?

Recall the differential on field space

4 [HE [EH =-Qx (367 5) + Hse [E] + B §J@source(5) =
by

= —Qx (%, ) + Hse[Z) +7i2 54[% M"]'

Example: In three spacetime dimensions, this can easily be made
integrable. The boundary source is simply the conformal dyad o = d=.
Setting do = 0 (and 6¢* = 0) is not a big deal in 3d.
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Removing the radiative data

What happens in 3+1?

J+
&
To make H¢ integrable, we choose My
M
06" =0,
M
6o = 0. @

What is the phase space, where these
conditions are satisfied?

Basic assumptions: (1) 6¢* = 0, (2) radiation has compact support and (3)
phase space on M neatly splits into radiative modes and edge modes.
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Crucial assumption: pre-symplectic two-form
on M splits into radiative and edge modes

1oa 1w
Oy = 5Q,,fd[a, £] d]aaﬂ\dcrg+§Q5dge[a, €] dé, NdéE,, .
Where the radiative part is symplectomorphic
(same phase space) as the portion of the
radiative phase space between ¢ and €-..

Qyad = %Qfﬁfd dooNdog ~ Q.

Corresponding pre-symplectic potential in terms of the asymptotic shear:

O = —# /1 du A d*Q(6 P65 + cc.),



Second-class constraints

Ba
Constraints: fix the asymptotic shear in terms 7, $
of a background field h Y
D, = Plo, h)(u,2,2) = M

=5 (u,2,2) — R (u, 2, %) < 0,

Where h, Poisson commutes with everything.

The fundamental Poisson commutation relations imply that the
constraints are second-class:

{0©(2),50 (1)} = 4G O(x,y) 67 (z,y),
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Dirac bracket

Dirac bracket for second class constraints ®, = 0, {®a, P5} = Aag,
AN = 65,

{A,B}" = {A,B} — {A,0.}A? {4, B}.

In our case easy: the corresponding pre-symplectic two-form now simply
reads
Q= Qum — Q.
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Dirac bracket and covariant phase space

Dirac bracket for second class constraints ®, = 0, {®a, P35} = Aag,
AHA,5 = 69,

{A,B}" ={A,B} — {A,0.}A"? {4, B}.

In our case easy: the corresponding pre-symplectic two-form now simply
reads
Q= Qum — Q.

We can now simply use covariant phase space methods to compute the
charge on the reduced phase space:

Qedge(0, Ze) = Qi (6, Ze) — Qraa(d, Ze) =
= (0. %0) = [ [0 Z0) — Ze0a5)] =

— (6. %) + ﬁ € r0a(5) — /ﬂ 510 ra(Ze)).
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Charge shifted upwards

Qe (6, Ze) = —6[He[M]) — /ﬂ 616 ra(Ze)].

First term: Charge at &,
Second term: Flux between € and €.

Qedge(é, g{) = _6[H§[M+]] = —6H5+

Bas

G
My
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Algebra of charges on the reduced phase space

(HE HE Y = Qi (Ze, Zer) — ?i [gﬁmd(yg/)_Euomd(gg)] T /m 0raa((€, €)).

l]+
First terms: Barnich - Trossaert Bracket, i B+
Last term: Flux between € and €. Y
M
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Role of the Barbero - Immirzi parameter



Self-dual two-forms on a null surface

On a null surface it is useful to work with forms rather than vectors.
Given a tetrad e®, we have a hierarchy of p-forms: e®* A - AeP.

m Directed area two-form % = ¢* A €?

»n4 ) 1 o

®m On a null surface ., there always exists a
spinor ¢ : & — C? and a spinor-valued
two-form n*,, € Q*( : C?) such that

©yXaBab = LaNB)ab-

m The Lorentz invariant spin (0, 0) scalar e = —inaf¢* defines the
oriented area of any two-dimensional cross section € of

Area[%)] =/e= —i/ nat®.
@ @
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Boundary term for the Holst action

Bulk plus boundary action.

m Holst action in the bulk,

SalA, €] = Vji{siG/J”EAB[e]AFAB[A]] e

m SL(2,C)-invariant boundary action,

S 1
Sw[Aln, Llg] = thut [ : / na A (D - §%>£A] + cc.
W

v | 871G

g
The one-form s, € Q' () is the null surface analogue of the
Ashtekar - Barbero connection

m bulk plus boundary action
S[A, eln, tlg] = SalA, €] + S[Aln, l]g]

m boundary conditions: d[g] = d[a, £, ma]/~ = 0.
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Immirzi parameter twists the boundary conditions

Complex abelian connection for U(1) x dilations.
an pA_ 1 . A
09D f” = i(li(g) +1<,0(g)>£ .
Boundary connection: sum of ‘extrinsic curvature’ and ‘spin connection’.
03y = K(g) — ’y_l(p(g).
Boundary conditions: §[sq, £*,mq]/~ =0
m vertical diffeomorphisms [¢* sq, €%, 0" ma] ~ [5a, ©+£%, mq]

m dilations [sq, €%, ma] ~ [#a + Vaf,el 1% mg]

m complexified conformal transformations A = u + iv:
[5a, €%, mg] ~ [%a - %Vau,e“é“,e”‘*i”ma]

B shifts [5, %, mq] ~ [5a+Cma + (g, £%,mq)

The equivalence class g = [»,,£%, m,]/~ Characterises two degrees of
freedom per point.

27/34



Corner term in the symplectic potential on partial Cauchy surfaces

Covariant pre-symplectic potential for the partial Cauchy surfaces:

Oy = nAdéA + ;/ YAB /\dlAAB + cc.
871G [

b
871G Jy
Gauge symmetries:
m Simultaneous SL(2,C) transformations of bulk plus boundary fields.
=0.

m Small diffeomorphisms that vanish at the corner ¢ |%,

m U(1) transformations of the boundary spinors.
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Graviton and SL(2,R)

The two degrees of freedom can be neatly organised into an SL(2,R)
element.

Define auxiliary SL(2,R) > S holonomy
0°9,8 = (o) ] + o X + 71y X)S,
where (J, X, X) are generators of SL(2,R)
[J,X] = —2iX,
(X, X] = +iJ.

Two physical degrees of freedom encoded into homogenous space
SL(2,R)/U(1) modulo vertical diffeomorphisms.
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Conclusion and Summary



A boundary breaks the gauge symmetries in the bulk and turns them into
physical boundary modes (boundary gravitons, edge modes, pseudo
Goldstone boson ...).

{;/)buundary

Physical phase space: Par = [20 x P25 gauge

;% \\ B In spacetime dimensions d < 4, there are no

/ gt degrees of freedom in the bulk. Physical phase
space is the phase space of boundary field

M theory alone.
€

B Treat gravity as a time dependent Hamiltonian
system. Remove the radiative modes from the
Cauchy hypersurface M. Encode them into
auxiliary background fields. Probably enough to
understand BH entropy at the full
non-perturbative level.

QM(5, Lg) =M —Q5J — k6A = 0.
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