### $SL(2,\mathbb{R})$ Holonomies on the Light Cone

#### Wolfgang Wieland

#### IQOQI Austrian Academy of Sciences Institute for Quantum Optics and Quantum Information

www.wmwieland.eu

MG16, Virtual 2021

05-07-2021

Introduction (one slide)

#### To characterise a gravitational subsystem, two choices must be made.

- A choice must be made for how to extend the boundary of the partial Cauchy hypersurface Σ into a worldtube *N*.
- A choice must be made for what is the flux of gravitational radiation across the worldtube of the boundary, i.e. a (background field, c-number) that drives the time-dependence of the Hamiltonian.



vs.



N.B.: In spacetime dimensions d < 4, there are no gravitational waves, and we can forget about the second issue. The Hamiltonian will be automatically conserved.

Covariant phase space, Holst action, causal regions

- Compact spacetime region *M*.
- Bounded by spacelike disks *M*<sub>0</sub>, *M*<sub>1</sub> and null surface *N*.
- Null surface boundary *N* embedded into abstract bundle (ruled surface) P(π, 𝔅) ≃ ℝ × 𝔅.
- Null generators  $\pi^{-1}(z)$ .



# Bulk plus boundary configuration variables

#### Fields in the interior of spacetime:

- Soldering form (tetrads):  $e_{AA'}$ .
- Self-dual two-forms:  $e_{AA'} \wedge e_{BB'} = -\epsilon_{AB} \bar{\Sigma}_{A'B'} + cc.$
- Spin connection:  $\nabla \psi^A = \mathbf{d} \wedge \psi^A + A^A{}_B \wedge \psi^B.$

### Fields at the boundary of spacetime:

- Null flag  $\ell^A$ :  $l^a \simeq i \ell^A \bar{\ell}^{A'}$ .
- Conjugate spinor-valued two-form  $\eta_A \in \Omega^2(\mathcal{N} : \mathcal{S})$ :  $\varphi^*_{\mathcal{N}} \Sigma_{AB} = \eta_{(A} \ell_{B)}$ .
- Area two-form:  $\varepsilon = i\eta_A \ell^A \in \Omega^2(\mathcal{N}:\mathbb{R}).$
- Abelian Ashtekar–Barbero connection  $\varkappa \in \Omega^1(\mathcal{N} : \mathbb{R})$ .



#### Adapted co-basis $(k_a, m_a, \bar{m}_a)$ :

- given the metric in the interior, co-dyads  $(m_a, \bar{m}_a) \in \Omega^1(\mathcal{N} : \mathbb{C})$  are unique modulo U(1) symmetry:  $m_a \longrightarrow e^{i\varphi}m_a$ .
- co-vector  $k_a$  is unique modulo Lorentz trafos  $k_a \longrightarrow e^{-f} k_a + \zeta \bar{m}_a + \zeta m_a.$
- dual null vector  $l^a \in T\mathcal{N} : k_a l^a = -1, \pi_* l^a = 0.$

### Associate spin dyad $(k_A, \ell_A)$ :

- Normalized:  $k_A \ell^A = 1$ .



#### Bulk plus boundary action:

$$\begin{split} S[A, e|k, \ell|\varkappa, k, m, \bar{m}] &= \frac{\mathrm{i}}{8\pi\gamma G} (\gamma + \mathrm{i}) \bigg[ \int_{\mathscr{M}} \Big( \Sigma_{AB} \wedge F^{AB} - \frac{\Lambda}{6} \Sigma_{AB} \wedge \Sigma^{AB} \Big) + \\ &+ \int_{\mathscr{N}} \eta_A \wedge \big( D - \frac{1}{2}\varkappa \big) \ell^A \bigg] + \mathrm{cc.} \end{split}$$

### Boundary conditions along $\mathscr{N}$ : $\delta[\varkappa_a, l^a, m_a]/_{\sim} = 0$

- vertical diffeomorphisms  $[\varphi^* \varkappa_a, l^a, \varphi^* m_a] \sim [\varkappa_a, \varphi_* l^a, m_a]$
- $\blacksquare \text{ dilations } [\varkappa_a, l^a, m_a] \sim [\varkappa_a + \nabla_a f, \mathrm{e}^f l^a, m_a]$
- complexified conformal transformations  $\lambda = \mu + i\nu$ :  $[\varkappa_a, l^a, m_a] \sim \left[\varkappa_a - \frac{1}{\gamma} \nabla_a \nu, e^{\mu} \ell^A, e^{\mu + i\nu} m_a\right]$
- shifts  $[\varkappa_a, l^a, m_a] \sim [\varkappa_a + \bar{\zeta} m_a + \zeta \bar{m}_a, l^a, m_a]$

The equivalence class  $g = [\varkappa_a, l^a, m_a]/_{\sim}$  characterises two degrees of freedom per point.

### Symplectic potential:

$$\Theta_{\mathcal{N}} = -\frac{1}{8\pi G} \int_{\mathcal{N}} \varepsilon \wedge \mathrm{d}\varkappa + \frac{\mathrm{i}}{8\pi\gamma G} \int_{\mathcal{N}} \left( (\gamma + \mathrm{i})\ell_A D\ell^A \wedge \mathrm{d}(k \wedge \bar{m}) - \mathrm{cc.} \right)$$

Area two-form: 
$$\varepsilon = -im \wedge \bar{m}$$
.

Shear and expansion:

$$\ell_A D \ell^A = -\left(\frac{1}{2}\vartheta_{(l)}m + \sigma_{(l)}\bar{m}\right)$$

#### Gauge symmetries:

- vertical diffeomorphisms  $\delta_{\xi}^{diff}[\cdot] = \mathscr{L}_{\xi}[\cdot] : \xi^a \sim l^a \in T\mathscr{N}$
- U(1) transformations  $\delta^{U(1)}_{\varphi}[\varkappa_a, m_a] = [-\gamma^{-1}\partial_a \varphi, i \varphi m_a]$
- dilations  $\delta_f^{dilat}[\varkappa_a, l^a] = [\partial_a f, fl^a]$
- shift symmetry  $\delta_{\zeta}^{shift}[\varkappa_a] = \zeta \bar{m}_a + \bar{\zeta} m_a$

# Transition to $SL(2,\mathbb{R})$ variables

## Covariant vs. kinematical phase space

#### In gravity, covariant phase-space methods are useful to

- identify gauge symmetries,
- calculate charges,
- derive the first-law of BH thermodynamics.

Less useful to identify Dirac observables and their algebra.

#### Strategy ahead:

- embed covariant phase space into larger kinematical phase space.
- impose constraints that bring us down to physical phase space.

Auxiliary two-dimensional vector space  $\mathbb{V}$  with complex basis  $(m^i, \bar{m}^i)$ , i = 0, 1, and internal metric  $q_{ij}$ ,  $q^{ij} : q^{ik}q_{kj} = \delta^i_j$ . Fiducial dyad

$$\begin{split} e^i_{(o)} &= \bar{m}^i \frac{\mathrm{d}z}{1+|z|^2} + \mathrm{cc.}, \\ \delta[e^i_{(o)}] &= 0. \end{split}$$

Fiducial area

$$e^i_{(o)} \wedge e^j_{(o)} = \varepsilon^{ij} d^2 v_o.$$

Parametrisation of the dyad

$$e^i = \Omega S^i_{\ j} e^j_{(o)}.$$



Basic variables are now:  $S^i_j: \mathcal{N} \to SL(2, \mathbb{R})$  and conformal factor  $\Omega: \mathcal{N} \to \mathbb{R}$ .

Convenient time variable  $U: \mathcal{N} \to \mathbb{R}$ , such that

Boundary condition at  $\partial \mathscr{N} = \mathscr{C}_+ \cup \mathscr{C}_-$ ,

 $U(\partial \mathcal{N}, z, \bar{z}) = \pm 1,$ 

Non-affinity equals expansion

$$\partial_U^b \nabla_b \partial_U^a = -\frac{1}{2} (\Omega^{-2} \frac{\mathrm{d}}{\mathrm{d}U} \Omega^2) \partial_U^a$$





## Step 2: Symplectic potential

Quantities with a circumflex are pull-backs to the fibres  $\gamma_z = \pi^{-1}(z)$ .

$$\Theta_{\mathcal{N}} = \frac{1}{8\pi G} \int_{\mathcal{N}} d^2 v_o \wedge \left[ p_K \mathrm{d} \widetilde{K} + \gamma^{-1} E \, \mathrm{d} \widetilde{\Phi} \, + \widetilde{\Pi}^i_{\ j} \left[ S \mathrm{d} S^{-1} \right]^j_{\ i} \right] + corner \ term.$$

#### Abelian variables:

U(1) angle:  $\widetilde{\Phi} := -\varphi_{(l)}\varphi_{\gamma_z}^* k$ , area:  $E := \Omega^2$ , lapse:  $\widetilde{K} := \mathrm{d}U \equiv \varphi_{\gamma_z}^* \mathrm{d}U$ .  $SL(2,\mathbb{R})$  holonomy flux variables

$$\begin{split} \left\{ \widetilde{\Pi}(x), S(y) \right\} &= -8\pi G \, X S(y) \, \widetilde{\delta}_{\mathscr{N}}(x, y), \\ \left\{ \widetilde{I}(x), S(y) \right\} &= +4\pi G \, J S(y) \, \widetilde{\delta}_{\mathscr{N}}(x, y), \\ \left\{ \widetilde{\Pi}(x), \widetilde{I}(y) \right\} &= -8\pi \mathrm{i} G \, \widetilde{\Pi}(y) \, \widetilde{\delta}_{\mathscr{N}}(x, y), \\ \left\{ \widetilde{\Pi}(x), \widetilde{\widetilde{\Pi}}(y) \right\} &= -16\pi \mathrm{i} G \, \widetilde{I}(y) \, \widetilde{\delta}_{\mathscr{N}}(x, y), \end{split}$$

Basis in  $SL(2,\mathbb{R})$  such that  $\widetilde{\Pi}^{i}{}_{j} = \widetilde{I}J^{i}{}_{j} + \widetilde{\Pi}\overline{X}^{i}{}_{j} + \widetilde{\overline{\Pi}}X^{i}{}_{j}$ , and  $[J,X] = -2\mathrm{i}X$ ,  $[X,\overline{X}] = \mathrm{i}J$ .

#### U(1) Gauss constraint

$$\forall \Lambda : G[\Lambda] = \int_{\mathscr{N}} d^2 v_o \wedge \Lambda \left( \widetilde{I} - \frac{1}{2\gamma} \, \mathrm{d}E \right) \stackrel{!}{=} 0,$$

Hamilton constraint/Raychaudhuri equation

$$\forall \xi^a : \pi_* \xi^a = 0 : H_{\xi} = -\frac{1}{4\pi G} \int_{\mathscr{N}} d^2 v_o \wedge \mathrm{d}U \,\mathscr{L}_{\xi}[U] \left[ \frac{1}{2} \frac{\mathrm{d}^2}{\mathrm{d}U^2} \Omega^2 + \sigma \bar{\sigma} \right] \stackrel{!}{=} 0,$$

Shear in terms of the off-diagonal components of  $\mathfrak{sl}(2,\mathbb{R})\text{-valued}$  momentum

$$\widetilde{\Pi} := \frac{\gamma + \mathbf{i}}{\gamma} \Omega \, \sigma \, \mathrm{d} U$$

Define  $\mathfrak{sl}(2,\mathbb{R})$  connection

$$\mathrm{d} \, S \cdot S^{-1} =: \widetilde{\varphi} J + \widetilde{h} \bar{X} + \widetilde{\bar{h}} X,$$

Second-class constraints

$$\begin{aligned} \forall \mu : D[\mu] &= \int_{\mathcal{N}} d^2 v_o \wedge \mu \left( \tilde{\Phi} - \tilde{\varphi} \right) \stackrel{!}{=} 0, \\ \forall \zeta : V[\bar{\zeta}] &= \int_{\mathcal{N}} d^2 v_o \wedge \bar{\zeta} e^{-2i\Delta} \left( \Omega^{-1} \widetilde{\Pi} - \frac{\gamma + i}{\gamma} \Omega \widetilde{h} \right) \stackrel{!}{=} 0, \\ \forall \lambda : C[\lambda] &= \int_{\mathcal{N}} d^2 v_o \wedge \lambda \left( p_K \widetilde{K} - \mathrm{d} E \right) \stackrel{!}{=} 0, \end{aligned}$$

U(1) connection

$$\Delta(u, z, \bar{z}) = \int_{\gamma_z(u)} \widetilde{\varphi},$$

Dirac bracket for  $SL(2,\mathbb{R})$  holonomy

$$\begin{split} \left\{ S^{i}_{\ m}(x), S^{j}_{\ n}(y) \right\}^{*} &= -4\pi G \, \Theta(x,y) \, \delta^{(2)}(x,y) \, \Omega^{-1}(x) \, \Omega^{-1}(y) \\ & \times \left[ \mathrm{e}^{-2 \, \mathrm{i} \, (\Delta(x) - \Delta(y))} \left[ X S(x) \right]^{i}_{\ m} \left[ \bar{X} S(y) \right]^{j}_{\ n} + \mathrm{cc.} \right] . \end{split}$$

Dirac observables can be constructed using standard techniques.

Gauge symmetries:

- **1** U(1) transformations
- vertical diffeomorphisms along null generators

# Summary

- Action with Barbero–Immirzi parameter  $\gamma$  in causal regions
- $\gamma$  mixes U(1) frame rotations and dilations
- Kinematical phase space carries  $SL(2,\mathbb{R})$  holonomy-flux algebra
- All constraints are polynomial in the fundamental fields