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Planck units and Planck luminosity

Simple observation: in D = 4 spacetime dimensions, the Planck power
(luminosity) is independent of &
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Physical significance: Only in D = 4, can we have a formula

Lyeat = Lp x f(scale-independent observables). ‘

We came close to observing such power

5
Lo =S ~3,63x 102 W,
G
Zrcak ~ 3,6 x 10° W.
GW150914

Comments:
m In D = 4, gravitational wave luminosity non-extensive.
m N.B.: In D = 3, Planck mass rather than luminosity r-independent.

m Invisible in S-matrix approach, where we have a v/ hG-expansion.
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Basic setup: Gravitational subsystems on the null cone

Quantum gravity in causal regions

m Initial data: three-metric h,;, and
extrinsic curvature
7 = d3vp, (K® — hK) ~ heyp.
m Constraints: |
%[h7 ﬁ—] = Qabcdﬁ_abﬁ_‘:d - dgvhR[h] =0
#,[h, 7] = D% = 0 generate gauge
redundancies on phase space.

m Gauge redundancies: states on 3,
3, ...are gauge equivalent.

m Basic idea: Characterize the entire gauge equivalence class [¥y; | by
pushing the time-evolution (gauge) to its extreme.

m The boundary of the future Cauchy development of ; is a null
(light-like) boundary. Quantize gravity at light-like boundary. Problem
simplifies. Less constraints.

[ Ashtekar, Speziale, Reisenberger, Freidel, Donnelly, Ciambelli, Leigh, Geiller, Pranzetti,
... Donney, Grumiller, Fiorucci, Ruzziconi, ..., Riello, Hoehn, Carrozza, ..., Barnich, Prabhu, Chandrasekaran, Flanagan, Compeére, ...]
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Null surface geometry

Signature (04++) metric.
QO,b = 6ijeia€jb7 17.] = 172 /\

Parametrisation of the dyad

e, =08",°,.

m Conformal factor 2 parametrizes
the overall scale.

m S°, € SL(2,R) determines the
shape degrees of freedom.

m Fiducial background dyad
(°e',%e?) = (d9, sind d).

77(2)
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Choice of clock

We consider a null strip ./ with two corners as our subsystem. No unique
clock along /. Possible choice

Boundary conditionat o4/ =€, U%_,

UON, 2, 7) = +1, T
U=+1

Affinity proportional to expansion N _

1

2 d a
5 (270 0%

d%

Parametrize physical clock  relative to
unphysical coordinate u.

5V, 05 = —

77\(2)

U =U=c">0.

The clock field x becomes a dynamical
reference frame (QRF at quantum level).
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Gauge group and gauge fixing:

- Keep direction of light rays fixed.
- Residual diffeomorphisms: angle dependent reparametrizations of %.

- Canonical generator on phase space: Raychaudhuri equation.

Raychaudhuri equation
(12
du?

SL(2,R) holonomy

0% = —205 Q% X,

%S = (cpJ—i- (cX —I—cc.))S.

€sl(2,R)

SL(2,R) generators splitinto U(1) complex structure J and shear generators:

[J,X] = —2i X,

[J,X] = +2i X,

S,

(X, X]=1iJ.

 Du=n
N—
T§
U=-1
~N_ | |
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Phase space and symplectic structure

Starting from the ~-action,” we obtain the symplectic structure on .

1 3 d oo
0) = —— d — Q7|6
©.5(9) 8t //V Yo du [ ] X+
L1
81vG

/d%0925¢+/ d*v, Tr (T1(65)S ™).
N N

Key Observations:
m Radiative modes encoded into T*SL(2,R) symplectic structure.
m Second-class constraints for sI(2, R) momentum I = LJ + cX + X
1 d 1
L=- —0? =— )02%0.
167vG du ¢ 8myG (y+D)%

m Scalar constraint H[N] = ©4(Ly) = 0 generates a Virasoro algebra.
See also recent results by Freidel and Ciambelli.

m Barbero-Immirzi parameter ~ alters symplectic structure.
“underlying action: S[A, e] = £ [, d*v [F“Baﬂ -5 aﬂwgeaﬁ“ﬂs].
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SU(1,1) Casimir and central charge

Canonical momentum dual to the SL(2,R) ~ SU(1,1) (shape) modes:
O=LJ+cX +eX €su(l,1)
SU(1,1) Casimir in terms of the geometric data:

2 1 4092 2y
L* —cc= (167r'yG)QQ (0° —4(1 +~7)07).

What we find is:

m Bose statistics for CFT modes along light rays:

- CFT has negative central charge.
- Both L2 < céand L? > ce possible.
- Butresulting CFT is non-unitary.

m Fermi statistics for CFT modes along light rays:

- CFT has positive central charge.
- Only L? > cc infra-Planckian modes occur.
- violation of unitarity can be avoided.
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Luminosity bound

To ensure positive definite inner product: Fermi statistics.
This implies

9% —4(1 +~%)o7 > 0.
For semi-classical states (as expectation values)

oo 1 1
<z .
92 T 41442

This must hold for all null hypersurfaces.
We obtain luminosity bound (power per solid angle)

N 405 . 5‘(@)(’&,7‘, Cv 6)0(3)(,“’7 T7<)5) 05 1
R 2T s ek
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Relationship to asymptotic observables

Utilize Bondi expansion

m Bondi mass loss formula

1

_ d2v. (0 50)
4G S%C]+ ¢

MB(U) = - |
m Falloff conditions \
_ 5(0) C
RO B AL L) )
\

Doy (7,6,0) = == +0(72).

vacuum GR

N

GR+matter

Asymptotic expansion

S’B(u C E) = 4705 lim 5’(1)(“7T7C7E)U([>(U,T,C’E).

G roo (W ey (u,7,¢,C))?

In the S-matrix approach, the O(r—) term of ¥, is a commuting c-number. In the
quasi-local approach, ¥,y is an operator akin to LQG area operator.
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Conclusion



Take home messages

m Non-perturbative quantisation of null initial data at finite distance.

- Consistency check: Spectra for geometric observables reproduce LQG
discreteness of area using CFT methods.

- Barbero-Immirzi parameter activates otherwise irrelevant SU(1, 1) irreps.
m Indications for Planck luminosity bound in quantum gravity.
m Proof of principle that r — oo and i — 0 may not commute.
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