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Outline and Motivation



Outline

Quantum gravity in finite regions—a paradigm of quasi-local holography.
■ It is quasi-local rather than local, because observables are attached to
finite regions rather than points on the manifold.

■ It is holographic, because evolution is studied through the exchange
of charges at the boundary seperating system and environment.

Paradigm connecting research on quantum reference frames, quantum
gravity, observables, holography.

In this talk, I will focus on only one recent development: Quasi-local
regularization of constraint algebra for selfdual gravity with potential
connection to earlier results by A. Ashtekar and M. Varadarajan.
Simplicial version of time evolution as spatial diffeomorphism.
*Laurent Freidel, Marc Geiller, ww, Corner symmetry and quantum geometry,
Springer Handbook od Spacetime (2023), arXiv:2302.12799.
*ww, Simplicial Graviton from Selfdual Ashtekar Variables (2023), arXiv:2305.01803.
*Abhay Ashtekar, Madhavan Varadarajan, Gravitational dynamics: A novel shift in the Hamiltonian paradigm,
Universe 7, 13 (2021), arXiv:2012.12094.
*Valentin Bonzom, Laurent Freidel, The Hamiltonian constraint in 3d Riemannian loop quantum gravity,
Class. Quant. Grav. 28 (2011), arXiv:arXiv:1101.3524.
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Back to selfdual variables



Ashtekar variables: first contact

[Ashtekar (1986)]: general relativity put on the phase space of an SL(2,C)
Yang–Mills theory.{

Ẽ a
i (x), Aj

b(y)
}
= 8πiGδji δ

a
b δ̃

(3)(x, y),

a, b, c, . . . are tangent indices and i, j, . . . refer to the internal SL(2,C)
directions. There are three of them as SL(2,C) is treated here as
complexifization of SU(2) (complex structure↭normal vector to Σ).
The constraints are the simplest possible gauge-invariant polynomials on
the now complexified phase space.

Gauss constraint: G̃i = DaẼ
a

i = 0,

Vector constraint: H̃a = F i
ab Ẽ

b
i = 0,

Hamiltonian constraint: ˜̃H = ϵ lm
i F i

ab Ẽ
a
l Ẽ b

m .
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ADM-type of action, metric on superspace

N.B.: Scalar constraint defines an inverse super-metric
G = 1

2
ϵ lm
i F i

ab [A] δ
δAi

a
⊗ δ

δA
j
b

on configuration space. ADM-type action

S =

∫
dt

∫
Σ

(
Ẽ a

i

(
d
dt
Ai

a −DaΛ
i + F i

abN
b)︸ ︷︷ ︸

D
dt

Ai
a

−N˜ ϵ lm
i F i

ab [A]Ẽ a
l Ẽ b

m

)
.

Compare this with the worldline action for I = 1, . . . ,K (uncoupled)
massless particles

S =

∫
dt
( K∑
I=1

pIµ(t)
d

dt
qµI (t)−

K∑
I=1

NI g
µν(qI(t))pIµ(t)pIν(t)).

Physical spacetimes carve out null geodesic in the space of self-dual
connections.
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Constraint algebra

All constraints are first-class (as in Yang–Mills). However, also very
different from Yang–Mills, as there are structure functions rather than
structure constants.{

Gi[Λ
i], Gj [M

j ]
}
= −8πiGGi

[
[Λ,M]i

]
,{

Ha[N
a], Hb[M

b]
}
= −8πiG

(
Ha

[
[N,M ]a

]
−Gi

[
F i

abN
aMb]),{

Ha[N
a], H[N˜ ]

}
= −8πiG

(
H[LN⃗N˜ ] +Gi

[
ϵ ki
j F j

ab Ẽ
a

k N˜Nb]),{
H[N˜ ], H[M˜]

}
= +8πiGHa

[
[N˜ ,M˜]a

]
,

where e.g. Gi[Λ
i] =

∫
Σ
G̃iΛ

i, and [N˜ ,M˜]a = δijẼ a
i Ẽ b

j (N˜DbM˜ −M˜DbN˜ ).
N.B.: Algebra still regular for degenerate geometries (squashed triads)
1
3!
ϵijkε˜abcẼ a

i Ẽ b
j Ẽ c

k = 0.
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Physical modes per point of Σ

Counting complex degrees of freedom:
Each point x on Σ carries kinematical variables Ai

a(x) and Ẽ a
i (x).

Kinematical degrees of freedom per points of Σ:

3× 3 = 9 (complex degrees of freedom)

Physical degrees of freedom per points of Σ:

9− 3− 3− 1 = 2 (complex degrees of freedom)

These are the two modes of polarization of the non-linear graviton.
We have no complete set of Dirac variables that could access these
modes at the full non-linear level. Standard constructions of Dirac
observables and physical phase space rely on additional auxiliary
structures, e.g. boundary conditions, asymptotic falloff conditions,
perturbation theory.
N.B.: Phase space is complex, all constraints are analytic functionals on
phase space. Going back to metric GR requires additional reality
conditions.
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Main strategy ahead

All physics relies on truncations. Idea: find a way to isolate the two
physical modes at the discretised level.

Basic strategy: introduce simplicial decomposition. Blow up points on the
initial manifold and replace them by simplicial building blocks
(tetrahedra).

Perhaps overly naïve, but if it works we could expect: each simplicial cell
represents a fundamental atom of geometry. Ignoring for a moment
additional boundary modes perhaps necessary, each such atom of space
is expected to carry two physical modes (four complex phase space
dimensions). Thus localizing radiative modes in each simplicial cell.
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Step 1: new regularization of the constraints



Lattice and dual lattice in a single cell
Introduce a simplicial discretisation of Σ. Consider a single building block,
an elementary tetrahedron T ⊂ Σ.

■ Boundary of the tetrahedron consists of
four triangles f1, f2, f3, f4.

■ Each such face fI is dual to a half link γI
connecting the centroid of T with the
centroid of fI .

■ Boundary links γJI ⊂ ∂T connect the
centroid of fI with the centroid of fJ along
the boundary of T .

■ The dual faces fJK are bounded by the
loop γ−1

J ◦ γKJ ◦ γK .

Comments:
- We need to speak about such internal loops (wedge holonomies)—otherwise
it is impossible to regularise the field strength F i

ab in a given cell T .
- Without wedge holonomies, non-local construction necessary in which the
field strength is smeared over a plaquette connecting many tetrahedra.

- We want to avoid such non-local construction, otherwise seems hopeless to
do constraint analysis on arbitrary triangulation.
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Lattice and dual lattice in a single cell

This is a departure from Regge calculus, where each building block is
assumed to be flat. No such assumption here. Hence, there is curvature
in each bulding block.

■ Bulk holonomies: hI = Pexp
(
−

∫
γI

A
)
.

■ Boundary holonomies:
hIJ = Pexp

(
−

∫
γIJ

A
)
= g−1

J gI .
■ Assumption: All curvature concentrated in
the bulk. Boundary flatness:
hIKhKJhJI = 1.

■ Bulk curvature:

FIJ := Pexp
(
−

∮
fIJ

A
)
= h−1

J hIJhI .

■ Non-abelian Stokes’s theorem:

Pexp
(
−

∮
∂f

A
)
= Sexp

(
−

∫
f

F
)
≈ 1−

∫
f

F iτi + . . .
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Fluxes and adapted basis

Besides the holonomies (magnetic fluxes), we have the electric fluxes.

■ Ashtekar electric flux:
E I

i =
∫
fI (Ej)x[g

−1(x)gIhI ]
j
i.

■ Adapted triad: u a
1 = Xa

1 −Xa
4 , u a

2 =
Xa

2 −Xa
4 , u a

3 = Xa
3 −Xa

4 .

■ Dual triad: uµ
a: u a

α uα
b = δab .

■ Adapted coordinates (u1, u2, u3) such that
tetrahedron is the point set uα > 0,∑3

α=1 u
α < 1.

■ Electric and magnetic fluxes:

E 1
i ≈ −1

2
ϵ˜abcu a

2 u b
3 u c

µ uµ
aẼ

a
i

∣∣
c
= −1

2
(d3u)−1u1

aẼ
a

i

∣∣
c
,

1

6
F i

ab u
a

α u b
β

∣∣
c
≈ F i[fαβ ]− F i[f4β ]− F i[fα4], where: F i[f ] =

∫
f

F i.
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Regularisation of the Gauss constraint

In the continuum, the smeared Gauss constraint is

Gi[Λ
i] =

∫
Σ

ΛiDaẼ
a

i = 0.

Choose a test function Λi that vanishes everywhere except in T . At the
discretised level, the constraint is then well approximated by the closure
constraint in each tetrahedron

GT
i [Λ

i] =
4∑

I=1

ΛiE I
i = 0.

N.B.: If we also impose reality conditions on E I
i , the closure constraint

allows to assign a geometric data (edge lengths) to each tetrahedron via
Minkowski theorem.

if GT
i = 0 and E I

i = Ē I
i : E I

i = n I
i ({ℓe}, R) area({ℓe}).
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Regularisation of the vector constraint
In the continuum, the smeared vector constraint is

Ha[N
a] =

∫
Σ

NaF i
ab Ẽ

b
i .

■ Set Na = 0 expect in T .

■ Set in T : Na = Nµu a
µ , µ = 1, 2, 3.

■ Use non-abelian Stokes’s theorem

FIJ = Pexp
(
−

∮
∂fIJ

A
)
≈ 1−

∮
fIJ

F.

■ Introduce fourth auxiliary direction

N4 = −
3∑

µ=1

Nµ.

■ Regularized vector constraint

∫
T

NaF i
abE

b
i ≈ −4

4∑
I,J=1

NITr
(
τ jFIJ

)
E J

j .
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Regularisation of the scalar constraint

The scalar constraint is smeared against an inverse density

H[N˜ ] =

∫
Σ

N˜ ϵ lm
i F i

ab Ẽ
a
l Ẽ b

m .

We split this integral into two parts. We assume N˜ = 0 outside T . Within
T , we regularize it by introducing the smeared quantity

NT :=
[ ∫

T

N˜−1
]−1

,

which is independnet of metric and connection (a c number).
Assuming the fields are slowly varying in T , we obtain the regularized
constraint∫

T

N˜ ϵ lm
i F i

ab Ẽ
a
l Ẽ b

m ≈ 8

3

4∑
I,J=1

NTTr
(
τ jFIJτ

i)E I
i E J

j .
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Step 2: additional closure constraint



Is there the right number of physical modes per lattice site?

The commutation relations for the half holonomies and fluxes define the
phase space T ∗SL(2,C)4.
Is there a chance that we obtain the correct number of physical modes
per lattice site?
The contribution to the symplectic potential from each lattice site is

ΘT (δ) = 16πiG
4∑

I=1

E I
i Tr

(
τ ih−1

I δhI

)
.

Now all four directions are treated as functionally independent. Yet in the
discrete, the tangent indices a, b, c, . . . refer to a three-dimensional space.
Tension: In the continuum, we have

ΘM (δ) = 8πiG

∫
M

Ẽ a
i δAi

a.

Assuming all discretised constraints are first-class, we would be left with
three additional spurious degrees of freedom:
3× 4− 3− 3− 1 = 5 = 2 + 3.
To remove the additional unphysical modes, it seems necessary to add
one additional closure constraint.
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Lattice and dual lattice in a single cell

Consider the dressed closure constraint (sort-of Bianchi identity?)

4∑
K=1

Gk(K) :=
1

4

4∑
I,K=1

[FKI ]
i
kE

I
i .

■ In the continuum limit, this constraint is
functionally dependent of the other
constraints.

■ It becomes proportional to the usual
closure constraint.

■ [FKI ]
i
k is the adjoint representation:

h−1τ ih = [h]ijτ
j with τi Pauli matrices.

■ Furthermore, for Regge-like curvature, the
dressed closure constraint is again
proportional to the usual closure
constraint:

Regge-like configurations: E I
i = [FKI ]

i
kE

I
i .
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All constraints first class

The set of constraints per each tetrahedron is first-class. With constraints:

closure constraint: Gi =
4∑

I=1

E I
i = 0,

dressed closure: Gi(K) =
4∑

I=1

[FKI ]
i
kE

I
i = 0,

vector constraint: HI [N
I ] = −4

4∑
I,J=1

NITr
(
FIJτ

j)E J
j = 0, ∀NI :

4∑
I=1

NI = 0,

scalar constraint: H =
8

3

4∑
I,J=1

Tr
(
τ iFJIτ

j)E I
i E J

j = 0.

For example:{
HI [N

I ], HJ [M
J ]
}
= −8πiGHI [N,M ]I + closure constraints,

[N,M ]I =
4∑

J=1

(
NJTr(FJI)M

I −MJTr(FJI)N
I
)
.
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Result relies on two additional constraints

By adding two additional conditions, we obtain a closed algebra:

■ dressed closure constraint (a central term):
∑4

I=1[FKI ]
i
kE

I
i = 0.

■ Boundary flatness: φ∗
TA = g−1dg.

The reduced phase space has 2× 2 complex dimensions, i.e. the simplicial
graviton for selfdual gravity.
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What about gravity in 2 + 1 dimensions?



Test: Repeating the construction for 3d gravity

Three-dimensional (Euclidean) gravity admits formulation in terms of
Ashtekar’s connection dynamics [A. Ashtekar, R. Loll (1994)]:

■ Kinematical phase space of SU(2) gauge connection and electric
field: {Ẽ a

i (p), Aj
b(q)} = 8πG δ̃(2)(p, q),

■ Constraints just the same as in four-dimensional selfdual theory:
- Gauss: DaẼ a

i = 0,
- Vector: F i

ab Ẽ
b

i = 0,
- Hamilton: ϵ jk

i F i
ab Ẽ

a
j Ẽ b

k = 0.
■ No local degrees of freedom: 3× 2− 3− 2− 1 = 0.
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Quasi-local regularization of the constraints

Hamiltonian lattice approach. Introduce triangulation of initial surfaceM .

Each triangle equipped with phase space T ∗SU(2)3.

As before, we split each simplicial building block, i.e. every triangle△, into
smaller wedges fIJ .
■ Wedge holonomies: FIJ = Pexp(−

∮
fIJ

A).

■ Boundary flatness Pexp(−
∮
∂∆

A) = 1 does
not imply wedge flatness.

■ Constraints assume same form as before,
but now straight-forward to solve.

■ Constraints impose wedge flatness FIJ = 1.
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Solution of the constraints: one state (BF vacuum) per triangle

In three dimensions:
■ Closure:

∑3
I=1 E

I
i = 0.

■ Dressed closure:
∑3

I=1[FKI ]
j
kE

I
j = 0.

■ Vector:
∑3

I,J=1 Tr
(
τ iFIJ

)
NIE J

i = 0, ∀NI :
∑3

I=1 N
I = 0.

■ Hamilton:
∑3

I,J=1 Tr
(
τ jFIJτ

i
)
E I

i E J
j = 0

N.B. Dressed closure implies FIJ = exp(−µJE J
j τ j) exp(µIE I

i τ i). Scalar
and vector constraint imply, in turn, sin(µI

2
) = 0, i.e. flatness of wedge

holonomies.
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Solution of the constraints: one state (BF vacuum) per triangle

The (unique) quantum state Ω△ for a single triangle△ that satisfies
F̂IJ |Ω△⟩ = |Ω△⟩ defines the BF vacuum:
⟨h1, h2, h3; g1, g2, g3|Ω△⟩ = δSU(2)(F12) δSU(2)(F23) δSU(2)(F31), FIJ = g−1

J h−1
J hIgI

The state for an entire triangulation is built by taking the tensor product
over all triangles and tracing over boundary modes

|Ω⟩ =
∏

e:edges

∫
SU(2)

dgs(e)

∫
SU(2)

dgt(e) δSU(2)(g
−1
s(e)

gt(e)) ⟨{ge}|Ω△1
,Ω△2

, . . . ⟩.

Conjecture: Same construction possible in 3 + 1, but now there are
infinitely many allowed physical states |Ωσ

T ⟩ labelled by radiative data σ
for each tetrahedron. Superpositions of spin networks,
”warp-network-states“ ...

|σ1, σ2, . . . ⟩ =
∏

e:edges

∫
SL(2,C)

dgs(e)

∫
SL(2,C)

dgt(e) δSL(2,C)(g
−1
s(e)

gt(e)) ⟨{ge}|Ω
σ1
T1

,Ωσ2
T2

, . . . ⟩
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Main task ahead



Gluing

The main open problem is how to glue adjacent tetrahedra.

Necessary to go beyond Hamiltonian analysis for a single building block.

Action for a single tetrahedron

S[E, h,N, g] =

∫
R
dt

(
ΘE,h

(
d

dt

)
− CA(E, h, g)NA

)
.

Coupled action from gluing tetrahedra together

S∆[E, h,N, λ] =
∑

T∈∆3

S[ET , hT , NT , gT ]−
∑
e∈∆∗

1

λi
eTr(τigs(e)g

−1
t(e)).
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Summary and Discussion

Summary:
1 New (quasi-local) regularization of the constraints. Possible
connections to tensor networks, spinfoams, group field theory,
quantum cosmology.

2 Regularisation possible only by introducing additional boundary
modes (here: edge modes ge ∈ SL(2,C)).

3 Additional closure constraint necessary:
- Otherwise algebra does not close
- Otherwise counting does not match two physical modes of the
continuum

4 In three spacetime dimensions, construction agrees with known
results [B. Dittrich, M. Geiller, BF vacuum (2014)].
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Summary and Discussion

Main open problems:
1 Connection to real variables. Reality conditions. Barbero–Immirzi
parameter. Strategy:

- Momentum shifted: Ẽ a
i → β+i

iβ
Π̃ a

i , {Π, A} = 1 = {Π̄, Ā}.
- Reality conditions: β

β+i
Π̃ a

i + cc. = 0.
- Constraints: Hβ = β

β+i
HC + cc. = 0.

2 Gluing of adjacent tetrahedra.
3 Matter couplings.
4 Connection to GFTs, spinfoams.
5 ...
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