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Introduction



Infra particles, coarse graining, edge modes, BH information

Why quantum gravity in causal regions? Different views:

� Mere gauge fixing: Represent

diffeomorphism equivalence class of

states [Ψ0] by states on the light cone.

� Coarse graining: Build observables by

successively gluing gravitational

subsystems.

Quantum gravity in three dimensions, Witten spinors and
the quantisation of length

Wolfgang Wieland
Perimeter Institute for Theoretical Physics

31 Caroline Street North
Waterloo, ON N2L2Y5, Canada

Fall 2017
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1. Introduction

Ψ0

Ψ1

Ψnull

1

� Soft modes/edge modes: In gravity, energy, momentum, angular

momentum, center of mass, supertranslations ... are analogous to

charge in QED. Do we have superpositions of such charges in nature?

Can we build them in the lab? Can they help us understand black

hole information loss?

[Strominger, Perry; Godazgar, Harlow, Wu; Kartik, Chandrasekaran, Flanagan, Bonga;

Freidel, Donnelly, Speranza, Riello, Geiller, Livine, Dittrich, Pranzetti, ww; Grumiller, Seraj, Barnich, Compère,...]
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Gravity in terms of differential forms

To understand how gravity couples to boundaries, it is useful to work with

differential forms rather than tensors since there is a natural notion of

projection onto the boundary, namely the pull-back ϕ∗ : T ∗M → T ∗(∂M),
which does not require a metric.

Fundamental configuration variables

gab = ηαβe
α
ae
β
b,

∇∧ Tα...β... = d ∧ Tα...β... +Aαµ ∧ Tµ...β... + . . .

−Aµβ ∧ T
α...

µ... − . . . .

Palatini action

S[A, e] =
1

16πG

∫
M

∗(eα ∧ eβ︸ ︷︷ ︸
Σαβ

) ∧ Fαβ [A] + boundary terms.

Symplectic potential

ΘΣ =
1

16πG

∫
Σ

∗Σαβ ∧ dAαβ︸ ︷︷ ︸
“p dx”

+corner terms.
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Charges and symmetries 1/2

Two kinds of gauge symmetries: diffeomorphisms and internal Lorentz

transformations.

Lorentz transformations

δΛ[eα] = Λαβe
β , Λαβ = −Λβα

δΛ[Aαβ ] = −∇Λαβ .

Lorentz charges are integrable at full non-perturbative level.

ΩΣ(δΛ, δ)
∣∣
EOM

= −δ[QΛ].

QΛ[Σ] = − 1

16πG

∮
∂Σ

∗ΣαβΛαβ .

NB: Such Lorentz charges do not exist in metric gravity (on the ADM

phase space). Physically meaningful perhaps only if we add fermions

(defects of torsion).
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Charges and symmetries 2/2

Two kinds of gauge symmetries: diffeomorphisms and internal Lorentz

transformations.

Base diffeomorphisms lifted upwards into the Lorentz bundle

δξ[e
α] = ∇(ξyeα) + ξy(∇∧ eα),

δξ[A
α
β ] = ξyFαβ .

Diffeomorphism charges

ΩΣ(δξ, δ)
∣∣
EOM

=
1

16πG

∮
∂Σ

ξy ∗ Σαβ ∧ δAαβ
?
= −δ[Pξ].

Trivially integrable at linear order in perturbations

eα =
◦
eα + fα ≡ ◦eα + fαβ

◦
eβ , fαβ = fβα,

Pξ =
1

8πG

∮
∂Σ

ξy ∗
◦
Σαβ ∧

◦
∇[αfβ].

NB: for an asymptotic time translation ξa =
[
∂
∂x0

]a
, the linearised charge Pξ

returns the ADM mass for a linearised solution fαβ = O(r−1) around
◦
eα = dxα.
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A puzzle: Integrability of charges

� In gravity, time evolution t→ t+ ε can
be understood as a large gauge

transformation.

� It seems reasonable to expect the

Hamiltonian is the generator for such

a gauge transformation:

H[Σ] ≡ Pξ[Σ]
?
=

∮
∂Σ

d2va ξbTab[?].

Σ

Σflux

vs.

N

2

� We assume that Pξ generates the symmetry algebra{
Pξ, Pξ′

}
= −P[ξ,ξ′] + c[ξ, ξ′].

� However, that’s at odds with the fact that a system may loose mass

via gravitational radiation

d

dt
Mc2 =

d

dt
H = {H,H} = 0,

= − 1

4πG

∮
S2
t

d2Ω |σ̇0|2 ≤ 0.

 �

� ... unless, we allow for an explicit time dependence in the

Hamiltonian ...
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Subsystems as evolving regions in space

To characterise a gravitational subsystem,

two choices must be made.

� A choice must be made for how to extend

the boundary of the partial Cauchy

hypersurface Σ into a worldtubeN.

� A choice must be made for what is the flux

of gravitational radiation across the

worldtube of the boundary, i.e. a

(background field, c-number) that drives

the time-dependence of the Hamiltonian.

Σ

Σflux

vs.

N

2

N.B.: In spacetime dimensions d < 4, there are no gravitational waves, and we can

forget about the second issue. The Hamiltonian will be automatically conserved.
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Covariant phase space, Holst action, causal regions



Basic setup, universal structure

� Compact spacetime regionM.

� Bounded by spacelike disksM0,M1 and

null surfaceN.

� Null surface boundaryN embedded into

abstract bundle (ruled surface)

P (π,C) ' R×C.

� Null generators π−1(z).

M

N

z

Pπ
−

1
(z

)

S2

2
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Bulk plus boundary configuration variables

Fields in the interior of spacetime:

� Soldering form (tetrads): eAA′ .

� Self-dual two-forms:

eAA′ ∧ eBB′ = −εABΣ̄A′B′ + cc.

� Spin connection acting on e.g.

spinor fields:

∇ψA = d ∧ ψA +AAB ∧ ψB .

Fields at the boundary of spacetime:

� Null flag `A: la ' i`A ¯̀A′ .

� Conjugate spinor-valued two-form

ηA ∈ Ω2(N : S): ϕ∗NΣAB = η(A`B).

� Area two-form:

ε = iηA`
A ∈ Ω2(N : R).

� Abelian Ashtekar–Barbero

connection κ ∈ Ω1(N : R).

M

N

z

Pπ
−

1
(z

)

S2

2
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Co-basis at the boundary

Adapted co-basis (ka,ma, m̄a):

� given the metric in the interior,

co-dyads (ma, m̄a) ∈ Ω1(N : C) are
unique modulo U(1) symmetry:
ma −→ eiϕma.

� co-vector ka is unique modulo
Lorentz trafos

ka −→ e−fka + ζm̄a + ζma.

� dual null vector

la ∈ TN : kala = −1, π∗l
a = 0.

Associate spin dyad (kA, `A):

� Normalized: kA`
A = 1.

� ηA = (`A k − kAm) ∧ m̄ ∈ Ω2(N : S)

M

N

z

Pπ
−

1
(z

)

S2

2
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Bulk plus boundary action

Bulk plus boundary action:

S[A, e|k, `|κ, k,m, m̄] =
i

8πγG
(γ + i)

[ ∫
M

(
ΣAB ∧ FAB −

Λ

6
ΣAB ∧ ΣAB

)
+

+

∫
N

ηA ∧
(
D − 1

2
κ
)
`A
]

+ cc.

Boundary conditions alongN: δ[κa, la,ma]/∼ = 0

� vertical diffeomorphisms [ϕ∗κa, la, ϕ∗ma] ∼ [κa, ϕ∗la,ma]

� dilations [κa, la,ma] ∼ [κa +∇af, ef la,ma]

� complexified conformal transformations λ = µ+ iν:

[κa, la,ma] ∼
[
κa − 1

γ
∇aν, eµ`A, eµ+iνma

]
� shifts [κa, la,ma] ∼ [κa+ζ̄ma + ζm̄a, la,ma]

The equivalence class g = [κa, la,ma]/∼ characterises two degrees of
freedom per point.
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Phase space on partial Cauchy surfaces

Covariant pre-symplectic potential for the partial Cauchy surfaces:

ΘΣ =
i

8πγG
(γ + i)

[
−
∮
C

ηAd`
A +

∫
Σ

ΣAB ∧ dAAB
]

+ cc.

Phase space of bulk and boundary degrees of freedom:

Pphys = (Pbulk × Pbndry)/gauge

Poisson brackets at the two-dimensional corner{
πA(z), `B(z′)

}
C

= δBAδ
(2)(z, z′).

Canonical (spinor-valued) momentum

πA =
i

8πG

γ + i

γ
ηA.
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Area operator

� The cross-sectional oriented area is

Area[C] = −8πG
iγ

γ + i

∮
C

d2xπA`
A.

� For the area to be real-valued (charge neutral), we have to satisfy the

reality conditions,

K − γL = 0.

� Generators of complexified U(1)C transformations

L = − 1

2i
πA`

A + cc. (generator of U(1) transformations),
K = −1

2
πA`

A + cc. (dilatations of the light like direction).
� Generators of generalised angular moments

Jξ[C] =

∮
C

(
πAξ

aDa`
A + cc.

)
, ξa ∈ TC.
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Phase space on the null surface: radiative modes

Symplectic potential:

ΘN = − 1

8πG

∫
N

ε ∧ dκ +
i

8πγG

∫
N

(
(γ + i)`AD`

A ∧ d(k ∧ m̄)− cc.
)

Area two-form: ε = −im ∧ m̄.

Shear and expansion:

`AD`
A = −

(
1

2
ϑ(l)m+ σ(l)m̄

)
Gauge symmetries:

� vertical diffeomorphisms δdiffξ [·] = Lξ[·] : ξa ∼ la ∈ TN

� U(1) transformations δ
U(1)
ϕ [κa,ma] = [−γ−1∂aϕ, iϕma]

� dilations δdilatf [κa, la] = [∂af, fl
a]

� shift symmetry δshiftζ [κa] = ζm̄a + ζ̄ma
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Transition to SL(2,R) variables



Covariant vs. kinematical phase space

In gravity, covariant phase-space methods are useful to

� identify gauge symmetries,

� calculate charges,

� derive the first-law of BH thermodynamics.

Less useful to identify Dirac observables and their algebra.

Strategy ahead:

1 embed covariant phase space into larger kinematical phase space.

2 impose constraints that bring us down to physical phase space.
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Step 1: Kinematical variables

Auxiliary two-dimensional vector space V with complex basis (mi, m̄i),
i = 0, 1, and internal metric qij , q

ij : qikqkj = δij .

Fiducial dyad

ei(o) = m̄i dz

1 + |z|2 + cc.,

δ[ei(o)] = 0.

Fiducial area

ei(o) ∧ ej(o) = εijd2vo.

Parametrisation of the dyad

ei = ΩSij e
j
(o).

M

N

z

Pπ
−

1
(z

)

S2

2

Basic variables are now: Sij : N → SL(2,R) and conformal factor
Ω : N → R.
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Step 1.5: Teleological time

Convenient time variable U : N → R, such that

Boundary condition at ∂N = C+ ∪C−,

U(∂N, z, z̄) = ±1,

Non-affinity equals expansion

∂bU∇b∂aU = −1

2
(Ω−2 d

dU
Ω2)∂aU

M

z

N

π
−

1
(z

)

S2

U = −1

U = +1

2

Nota bene: δU 6= 0, but δU
∣∣
∂N

= 0.
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Step 2: Symplectic potential

Quantities with a circumflex are pull-backs to the fibres γz = π−1(z).

ΘN =
1

8πG

∫
N

d2vo ∧
[
pKdK̃ + γ−1E dΦ̃ + Π̃i

j

[
SdS−1]j

i

]
+ corner term.

Abelian variables:

U(1) angle: Φ̃ := −ϕ(l)ϕ
∗
γzk, area: E := Ω2, lapse: K̃ := d̃U ≡ ϕ∗γzdU.

SL(2,R) holonomy flux variables{
Π̃(x), S(y)

}
= −8πGXS(y) δ̃N(x, y),{

Ĩ(x), S(y)
}

= +4πGJS(y) δ̃N(x, y),{
Π̃(x), Ĩ(y)

}
= −8πiG Π̃(y) δ̃N(x, y),{

Π̃(x), ˜̄Π(y)
}

= −16πiG Ĩ(y) δ̃N(x, y),

Basis in SL(2,R) such that Π̃i
j = ĨJ ij + Π̃X̄i

j + ˜̄ΠXi
j ,

and [J,X] = −2iX , [X, X̄] = iJ .
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First-class constraints

U(1) Gauss constraint (diagonal part of SL(2,R))

∀Λ : G[Λ] =

∫
N

d2vo ∧ Λ

(
Ĩ − 1

2γ
d̃E

)
!
= 0,

Hamilton constraint/Raychaudhuri equation

∀ξa : π∗ξ
a = 0 : Hξ = − 1

4πG

∫
N

d2vo ∧ dULξ[U ]

[
1

2

d2

dU2
Ω2 + σσ̄

]
!
= 0,

Shear in terms of the off-diagonal components of sl(2,R)-valued
momentum

Π̃ :=
γ + i

γ
Ωσ d̃U
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Second-class constraints

Define sl(2,R) connection

d̃S · S−1 =: ϕ̃J + h̃X̄ + ˜̄hX,
Second-class constraints

∀µ : D[µ] =

∫
N

d2vo ∧ µ
(

Φ̃− ϕ̃
)

!
= 0,

∀ζ : V [ζ̄] =

∫
N

d2vo ∧ ζ̄e−2i∆

(
Ω−1Π̃− γ + i

γ
Ωh̃

)
!
= 0,

∀λ : C[λ] =

∫
N

d2vo ∧ λ
(
pKK̃ − d̃E

)
!
= 0,

U(1) connection

∆(u, z, z̄) =

∫
γz(u)

ϕ̃,
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Dirac bracket

Dirac bracket for SL(2,R) holonomy{
Sim(x), Sjn(y)

}∗
= −4πGΘ(x, y) δ(2)(x, y) Ω−1(x) Ω−1(y)

×
[
e−2 i (∆(x)−∆(y))[XS(x)

]i
m

[
X̄S(y)

]j
n

+ cc.

]
.

Dirac observables can be constructed using standard techniques.

Gauge symmetries:

1 U(1) transformations

2 vertical diffeomorphisms along null generators
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Summary



Summary

� Action with Barbero–Immirzi parameter γ in causal regions

� γ mixes U(1) frame rotations and dilations. This is extremely
important, it gives a geometric explanation for LQG discreteness
of geometry.

� Kinematical phase space carries SL(2,R) holonomy-flux algebra

� All constraints are polynomials in the fundamental fields.
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