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Canonical (Ashtekar) variables: A’, =T, [E] +iK',, B,* = d*v e,
Poisson brackets as in Yang — Mills:
{B,%(x), A\ (y)} = 8miG8,576(x, y)

But also very different from Yang - Mills: the Hamiltonian is a sum of
constraints (+boundary term at infinity),

G = D.E;" =0 (generators of SL(2,C) gauge transformations)
H,=F,E’=0
H = llemyFﬁab El”’Emb -0

} generators of hypersurface deformations
2
Observables commute with the constraints (gauge generators) ~» no

local observables in GR.

Dirac program: States ¥ are wave-functionals ¥[q] of the
configuration variable ¢. Particularly neat such functional is a Wilson

loop,
U, ;[A4] = T, [Pexp( — / A)]

In loop gravity, the entire state space is constructed by successively
exciting such gravitational Wilson loops out of a vacuum that
represents no space at all.
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Spin network basis

L€ sy (H; @ Hy @ ...)

J=0.415,..

m Eigenstates of three-geometry are labelled by graphs I (combinatorial
structure) with spins 7 and intertwiners (Clebsch - Gordan coefficients) .

U= U0, 5 0)
T,5,0
B We do not measure microscopic spins and intertwiners, rather components
of the Weyl tensor at infinity, mass, energy, angular momentum etc.
m We thus need a description to translate microscopic spins and intertwiners
(defined locally) to physical observables (defined non-locally).

I0,7,7) 5 |M, J,...)
B Two strategies: (i. relationalism) Anchor fields at other fields — e.g. using four
matter fields p* as material reference systems z* (). (ii. quasi-local approach)

Treat the gravitational field in a finite region as a Hamiltonian system. Anchor

the observables at a finite boundary, take the boundary to infinity.
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Coupling spin-networks to boundaries

m Loop gravity boundary charges: Quantum
three-geometry described by spin networks. If they hit a
boundary, a surface charge is excited (namely a spinor).

U [A] = Tr; [Pexp(—/ ).

«@
What is the classical Hamiltonian description for these
loop gravity boundary spinors? What is their role in
classical GR?

m Suggestive idea: The loop quantum gravity boundary spinors encode
gravitational edge modes on the boundary of space time.

- Emerged out of spinor representation of LQG [L. Freidel, S. Speziale, E. Livine, Girelli, ww,
E. Bianchi et al.]
- Quasi-local realisation of flat space holography [Grumiller, Barnich, Compere,...]
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Outline of the talk

Three dimensions
- Conformal boundary spinors for quantum gravity in three dimensions
- Quantisation of length without spin networks

Four dimensions
- Spinors as gravitational edge modes on null surface boundaries
- Quantisation of area without spin networks

Conclusion
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Conformal boundary CFT and 3d euclidean loop
guantum gravity



m Setup: Euclidean gravity in three
dimensions with vanishing
cosmological constant.

m Quasi-local approach: Gravity as a
Hamiltonian system in regions with
boundaries at finite distance.

m Bulk configuration variables: SU(2)
spin connection A, and possibly
degenerate triad ¢‘,. Corresponding
Metric: gap = dije’qe’,,.

The action in the bulk is topological. EOM given by flatness constraint
F'=dAA + %ellmAl A A™ = 0 and torsionless condition V Ae' = 0.

1 i
S,ﬂ[e,A] = %/%eiAF [A}

Boundary conditions: Different boundary conditions require then
different boundary terms, which, in turn, lead to different boundary field
theories.



Goal: Realise quantisation of geometry in terms of a (dual) conformal
boundary field theory (for first-order spin connection variables).

m The boundary 8 = 0. is two-dimensional. In two dimensions, the
boundary metric ha, = @594, Can be always diagonalised by applying

appropriate boundary diffeomorphisms.

®m The boundary metric is then fully characterised by a conformal factor
Q and a fiducial two-dimensional metric gqup.

Idea: Treat the conformal factor as a dynamical field (from the
perspective of the boundary CFT), but fix its conjugate momentum (the
trace of the extrinsic curavture) through appropriate boundary
conditions. Simplest possibility: K¢, = 0.

*E. Witten, A Note On Boundary Conditions In Euclidean Gravity, arXiv:1805.11559v1 (2018).
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http://arxiv.org/abs/1805.11559v1

Conformal boundary conditions

Idea: Treat the conformal factor as a dynamical composite field (from the
perspective of the boundary CFT), but fix its conjugate momentum (the
trace of the extrinsic curavture). Simplest possibility: K¢, = 0.

Conformal boundary conditions
©igab € [qav) & IV B = Ry 1 @b = O *qas,
K =V.,n*=0.
Nota bene: K = 0 is the same as to say that the boundary is a minimal

surface (such as a soap film).

*W. Wieland, Conformal boundary conditions, loop quantum gravity and the continuum, JHEP 10 arXiv:1804.08643 (2018).
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http://arxiv.org/abs/1804.08643

Key observation: At the (cylindrical) boundary % of J# there always exists a
spinor £€* and a complex-valued one-form m, € Q' (% : C) such that the

pull-back of the triad assumes the following form:
* i %UABigAgBmH. +cc.

RBE 0 =
PRBE a \/5

Geometric interpretation
m The dyade (mq, m,) determines the fiducial boundary metric:
dab = 2m(, 1y (boundary indices raised and lowered with gas, ¢*°).

m The spinor ¢4 determines the (internal) normal @ = (¢|5|¢)/||€]|° to
the boundary.

m The norm [|€]|? = 644.6*€4" = (¢]¢) determines the conformal factor.

Conformal factor
Pagab = 2qap = (47G)”[|€]|" qas.
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Conformal boundary conditions in terms of boundary spinors

We can now neatly express the boundary conditions in terms of the
SU(2) boundary spinors.

metric formulation connection formulation

_ i 4nG i A
‘p;g”b =Q 2Qab 90.*%elu = \/5 aABlg EBma + cc.

K® =0 me P4 =0

Where we introduced the SU(2) x U(1) boundary covariant derivative:
m SU(2) x U(1) boundary covariant derivative: @a£4 = Da€4 + L T4
m SU(2) gauge covariant boundary derivative: D, = 05V
m U(1) fiducial boundary spin connectionT': d Am +iI’ Am = 0.
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Bulk plus boundary action:

S[Aele] = o G/el/\F’[A] \[ [5Am/\Dg —cc.]

Variation of the action yields equations of motion in the bulk (F* =0and
' = V Ae' = 0) plus boundary conditions:.

The glueing conditions linking the bulk and boundary theories.

1 471'G
W‘%eafif %0 ap'ma + cc.

V2

Taking into account the variation of the spinors themselves, we obtain the
boundary field equations, namely

1
m/\D{A—idmgA:0©m“9afA:O©K“a =0

The holomorphicity of the boundary spinor implies that the boundary is a
minimal surface. Boundary conditions = boundary EOMs.
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Hamiltonian analysis: Symplectic structure

Introduce a foliation and evaluate the first variation of the action.

m Pre-symplectic potential:
M
1 i
@E = —m EEi/\dA +
@? - [ eamae® — e,
7 V2 Jo! :
m Gauge condition: A%, =0, m, = daz/V2
is admissible in the cylinder.

This is only partial gauge fixing residual gauge transformations: 9,A* = 0.

Mode expansion £ ( Z 22" and symplectic potential:
nEZ
1 oo
0= 5 Z 6AB€;?df?n_1 + cc.

Poisson brackets
{5;37 Efm} = 6ABé'm,—n—la {E_;?I,E_g,} = gA,Blém,—n—L
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SU(2) gauge transformations

To complete the Hamiltonian analysis, we consider gauge
transformations and observables.

Simplest: Internal SU(2) transformations, which act in the obvious way,
o'y = € mAle™,, OaA', =~V A", SaEt = 50 ApiNER.

The vector fields 5 define degenerate (gauge directions) of the
pre-symplectic two-form Qs = dOs; (even for large gauge transformations
not vanishing at the boundary),

Qs (0a,0) = 0.
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The boundary action defines a CFT with vanishing central charge.

The conformal symmetries are generated by vector fields t* € T,
whose restrictions to the boundary are conformal Killing vectors:

a 1 .
t {g‘; €ETH : Date) — §Qab9ct =0.

In the bulk, the diffeomorphisms act through the gauged Lie deriavtive

bre' = L' =tu(V Ae')+ VA (tae),
6tAi == ngl == tJFZ

The boundary fields transfrom with conformal weight (3, 0),

St =DM + %(mbmcgbtc)fA.



Quasi-local energy

For any such vector field the field variation ¢ is integrable,
Q5 (6¢,6) = —0E[B)].

Quasi-local charge on the boundary € = 9%,

_ _ _ a,b
E[%) = \/_ [t MafADEA cc.] [g T
With the conserved and traceless (Brown - York) energy-momentum
tensor, . .
_ _c A - -
Tay = NG [mamb§Am DE" + cc.] 87rGKab'
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Virasoro algebra

Consider gauge choice where A’, = 0 and m, = 9a2/V2,
Ei, [€) = tnLn +cc., for: t& =t,2""" 9% +1,2""'02.

Virasoro generators

oo}

Z (2m +n 4+ 1) eABé'fm—n—lgfw

m=—0o0

Lp=

N

that satisfy the Virasoro algebra with vanishing central charge,

{Lm, Ln} = (m —n)Lmtn-
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Quantisation of length in three-dimensional euclidean
quantum gravity



Super-metric of a loop

We now want to demonstrate length quantisation starting from the field
theory in the continuum.

P m Consider a loop a winding
once around the cylinder
¢ B = 0.

@ o m Its physical length L[a] is
determined by the conformal

factor, proportional to ||£]|.

= f dr \/ Qab;)/a;yb x Q

We use the mode expansion and find

Lia] = 47G Z G [oJené’.

n,m=—oo

Where we introduced the super-metric on the covariant phase space

1 d Sngm
ey ]:2ﬂ7{d5 2540
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Landau operators

Riemann mapping theorem implies that it suffices to show length
quantisation for circles in the fiducial background metric gas = 2m(,7s).

For a circle ar : |z|? = R?, the metric is diagonal,
Gonr = R 4 06™™.
Suggesting to introduce the harmonic oscillators for n > 0,
A_l[n+lA_i A—A’]
ap = R 2 511 }2"4_%'5 zl’é——n-—l )
1 1 L a7
T3l SRR e

Changing R amounts to change the frequency of the harmonic oscillators.
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Only non-vanishing Poisson brackets

{ai @} = 16mnd™ = (00,500 .
Loop Gravity is based on the Ashtekar - Lewandowski vacuum, a state
with totally degenerate spatial geometry.
The boundary field theory analogue of this state in the continuum is now
simply the Fock vacuum of the oscillators,

Vn>0: af|0,aR> = bﬁ’O,aR> =0

Choosing a normal ordering, the total length of a loop ar turns into the
sum of two number operators.

Liag] = 47G i S [a;;"aﬁ + Eﬁ'b;‘}] .
n=0

In three spacetime dimensions, Newton's constant G has dimensions of
length. Possible eigenvalues for the circumference of the circle given by

0,47G,87G, 167G, . ..
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Four dimensions: Spinors as gravitational edge modes
on a null surface



Subsystems of the gravitational field with inner null boundaries .4 (all
fields assumed to be regular on ./, excluding e.g. focal points).

®m Boundary consists of partial Cauchy
surfaces X, X

m and a null surface " (e.g. isolated
Horizon, but this is not necessary).

m The gravitational action consists of bulk plus boundary contributions.

m What counter term shall we put at /7 Difficulty: there is now an
additional constraint to be imposed—that the boundary is null.

m Working with self-dual Ashtekar variables in the bulk, we will find
such a boundary term in terms of boundary spinors coupled to the
spin connection in the bulk.

*R. Wald and A. Zoupas, A General Definition of “Conserved Quantities” in General Relativity and Other Theories of Gravity,
Phys.Rev. D 61(2000), arXiv: :gr-qc/9911095.
*T. Andrade and D. Marolf, Asymptotic symmetries from finite boxes, Class. Quant. Gravity. 33 (2016), arXiv:1508.02515.


http://arxiv.org/abs/:gr-qc/9911095
http://arxiv.org/abs/1508.02515

Key observation: Plebanski two-form simplifies on null boundaries

On a null surface it is useful to work with forms rather than vectors.
Given a tetrad e®, we have a hierarchy of p-forms: e®* A - A e®P.

m Plebanski's directed area two-form %% = e A e? splits into self-dual
and anti-selfdual components:

nA 0 1 o

m On a null surface &, there always exists a spinor ¢ : # — C? and a
spinor-valued two-form n*,, € Q*( : C?) such that the pull-back of
Y ABab to the null surface can be parametrised as follows,

©yXaBab = £(aNB)ab-

*[R. Capovilla, T. Jacobson, J. Dell, L. Mason, J. Plebanski , K. Krasnov, H. Urbantke,...]
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Intrinsic null geometry in terms of 54, and ¢4

The p-form spinors (naas, £*) determine entire intrinsic geometry of ..

m The spin (3, 3) vectorial component

m The spin (1,0) tensorial component
nalp) defines the pull-back of the
self-dual two-form ¢*Y 45 to /.

m The Lorentz invariant spin (0, 0) scalar e = —ina¢* defines the
oriented area flux of any two-dimensional cross section € of

Areac[®] :/e: —i/ nat®.
© %

m The pair (naa, *) determines the intrinsic signature (0+4-) metric
Gab = 2myayy ON A completely.

0* ~ it47%" defines the null generators.
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Two notions of area: densities vs. two-forms

m Metrical area of a cross-section €

Areay[6] = /dsdt\/det 88’0) g(as’at)> > 0.

g(@t, 9(0k, Or).
m Oriented area flux of a cross-section €

Areac[@] = —i / nat® e R.
€

B Relative sign distinguishes ingoing from outgoing null boundaries.
m Analogous to the two natural volume elements on the manifold,

d'z —detgw,—:I:1

41 Eaﬁuuea A eﬁ A e* N e”.
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m Boundary spinors (n.aa, £) determine the intrinsic geometry of ¥

m Extrinsic geometry characterised by a U(1)c boundary connection wq
and a spinor-valued one-form +*, modulo the equivalence relation

Wa ~ Wa + fa, P ~ P, — [0,

m Equivalence class [wa, 1*,] determines the exterior covariant
derivatives (shear+expansion+surface gravity)

DA = 4wt + ¢4,
Dnas = —-wAna.

m Complexified U(1)c¢ transformations

- A A
NAab — € C77Aab7 Pia — eHw as

0t — e, Wa — Wa + Oal.



New boundary term for the self-dual action

The boundary spinors enter the action through boundary terms.

m Tetradic Hilbert - Palatini action in the bulk,

SulA, e] =

i AB
SWG[”EAB[E]AF (4] + cc.

®m SL(2,C)-invariant boundary action,

Sy[Aln, €] = % //,"A A DO 4cc.

pdq
m bulk plus boundary action

t;[f176|777€] = 5;47[14764 + fi¥[14|ﬂaéq-
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Hamiltonian analysis

m The variation of the action determines both the equations of motion
and the symplectic potential.

08 = BEOM - 8 + Oo.4(9). |

B Ops = Ox, +Ox, + 6.
m Covariant Hamiltonian formalism

pre-symplectic two-form: Qs = dOx,
€0 gauge symmetries: Qx(d,) =0,
Hamilton equations: Qs (dm,0) = —6H.

*R. Wald and A. Zoupas, A General Definition of “Conserved Quantities” in General Relativity and Other Theories of Gravity,
Phys.Rev. D 61(2000), arXiv: :gr-qc/9911095.
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Corner term in the symplectic potential on partial Cauchy surfaces

Covariant pre-symplectic potential for the partial Cauchy surfaces 37

i AB
SWGLEABAdA :|+CC.

Poisson brackets at the two-dimensional corner

nadet +

i
Ox = [_SWG %

{nAab(z),ZB(z')}%, = 87riG6fz§ab<5(2)(z, 2.
Pre-symplectic structure along the portion of the null surface

B i
G

Oy = [/ 7]A‘€A ANdw 4+ naA d]'L/JA ]+CC. = “intr. A extr. geometry”,
W N—— ——

‘Coulombic part’ ‘radiative part’

with D4 = we? + 4“4 on .
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Fock quantization of area



Inclusion of the Barbero - Immirzi parameter ~

The Immirzi parameter v > 0 is a coupling constant in front of the term
ea A eg A FP[A], which can be added to the action without changing the
equations of motion. For ~ # 0, we must modify then the boundary
action as well.

m Bulk action

SJ{[A,@] = 8711’G|:/:” ’Y’—:l EAB/\FAB] + cc.

m Boundary action for the null surface
Sx[Aln, €] / n A A DEA] + cc.

m Canonical momentum (spinor-valued two-form on the boundary)

i y+i

AT G y
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Reality conditions and Poisson brackets

m The Poisson brackets for the boundary variables are

{ma(2),t6(z)}, = eand®(2,2).
m Generator of complexified U(1)¢ transformations
L= —%w 07 + ce. (generator of U(1) transformations),
K= —%71’ Al* + ce.  (dilatations of the null normal).
m Upon introducing ~, the cross-sectional area is neither L nor K, but

€ = __87T(;“;z“f7714€[4.
7+

m For the area to be real-valued (charge neutral), we have to satisfy the
reality conditions,
e=e|K—~yL=0.
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Landau operators

m Poisson brackets in the continuum
{ma(z), 0% (')} = 656P(2,2).

m Strategy: Find creation and annihilation operators and quantise them
in the continuum.

m This requires two additional structures:
Fiducial hermitian metric: 644/ = caaran®,
Fiducial area element:  d*Q = Q*(9, ¢)sin®¥ d9 A de.

m Gravitational Landau operators (half densities)

_ % (V05 1y~ ﬁ#],
\/_ [\/d2_€ + \/E(SAA TFA/]

m Poisson brackets
{aA( ),ap(z)} = {bA(z ),bs(2")} = 16563 (2,2).
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Fock quantisation of the area flux

m Fock vacuum in the continuum
Vz €€ : aA(z)|{d2(2, na},0) =0,
b (2)|{d*Q, na},0) = 0.
m Imposition of the reality conditions:
- 1
L(z) = 3 [aL(z)aA(z) — bL(z)bA(z)],

K(z) = % [a4(2)b* () — hel,

[R’(z) - ’Yﬁ(z)]‘l’phys =0.

m K is a squeeze operator, L plays the role of intrinsic spin.
m Physical states exhibit quantization of area

Areac[€]Vpnys = 471G / [alya™ = b,b"] W pnye.
3

m Possible measurement outcomes for cross-sectional area of
8wy hG
CS

i, 2j €.

a;
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Conclusion and Outlook



We started with a heuristic argument: In LQG, the quantum states of
geometry are built from gravitational Wilson lines for the spin connection. If
these Wilson lines hit a boundary, they excite a surface charge, namely a
spinor sitting at a puncture.

We then found the classical interpretation for these surface spinors:
The LQG boundary spinors appear already at the classical level as
gravitational edge modes in the Hamiltonian formalism in domains bounded
by null surfaces.

Quantisation of area in conventional Fock space: The generator of
dilatations of the null normal is simply the cross-sectional area. We then
quantised the area by quantising the boundary spinors using a conventional
Fock representation. Upon introducing the Immirzi parameter ~, we
reproduced the LQG quantisation of area without ever introducing spin
networks or discretizations of space.

Goals ahead: We now have two representation of quantum geometry, (i)
discrete spin network representation and (ii) boundary Fock representation.
Understand algebra of observables, relation to twistor theory, scattering
amplitudes.
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