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Introduction



Quantum geometries vs. discrete geometries

U, ;[A] = Tr; (Pexp( -4, A))

m LQG is a quantisation of the spin structure of
spacetime:

- Quantum states of gravity are built from
gravitational Wilson lines for the spin connection.

- Each Wilson line carries a spin j, which represents a
quantum of area.

aj = 819G /TG T 1)

B The appearance of such discrete and combinatorial structures has led to the
idea that LQG is a fundamentally discrete theory on a spacetime lattice. The
‘full theory’ would only be defined through a continuum limit. It was then
often argued that the discrete spectra are lattice artefacts that may disappear
in the continuum limit.

B In this talk, | will argue that the LQG discreteness of geometry already appears
in the continuum and can be understood from the quantisation of
gravitational edge modes on a null surface. Spin networks or triangulations of
space do not enter the construction.
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m Basic question: Bulk geometry described by spin
. ) (7
networks. If they hit a boundary, a surface charge is LAY
excited (namely a spinor). What is the classical
Hamiltonian description for these loop gravity boundary
spinors? What is their role in classical GR?

m Spinors as square root of geometry: A spinor ¢ € C2 is the square root of
a null direction (T, X,Y,Z) : T2 - X2 -Y2 - 22 =0

1 (T+2z X-iz 1o
WM”@(XHY T—Z)’ Y e

m Suggestive idea: The loop quantum gravity boundary spinors encode
gravitational edge modes on a null boundary.

- Part of a wider effort to realise soft (edge) modes, memory effect, quasi-local
observables within non-perturbative QG, and establish connections to other QG
approaches (string theory, quasi-local holography [Jacobson], Strominger’s soft modes,
tensor networks) [L. Freidel, M. Geiller, A. Riello, D. Pranzetti, B. Dittrich, W. Donnelly]

- Emerged out of LQG bosonic representation [L. Freidel, S. Speziale, E. Livine, ww, E.
Bianchi et al.]
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Spinors as gravitational edge modes on a null surface



Subsystems of the gravitational field with inner null boundaries .4 (all
fields assumed to be regular on ./, excluding e.g. focal points).

®m Boundary consists of partial Cauchy
surfaces X, X

m and a null surface " (e.g. isolated
Horizon, but this is not necessary).

m The gravitational action consists of bulk plus boundary contributions.

m What counter term shall we put at .#? Difficulty: there is now an
additional constraint to be imposed—that the boundary is null.

m Working with self-dual Ashtekar variables in the bulk, we will find
such a boundary term in terms of boundary spinors coupled to the
spin connection in the bulk.

*R. Wald and A. Zoupas, A General Definition of “Conserved Quantities” in General Relativity and Other Theories of Gravity,
Phys.Rev. D 61(2000), arXiv: :gr-qc/9911095.
*T. Andrade and D. Marolf, Asymptotic symmetries from finite boxes, Class. Quant. Gravity. 33 (2016), arXiv:1508.02515.


http://arxiv.org/abs/:gr-qc/9911095
http://arxiv.org/abs/1508.02515

On a null surface it is useful to work with forms rather than vectors.
Given a tetrad e®, we have a hierarchy of p-forms: et A --- A e®?.

m Plebanski's directed area two-form £ = e A € splits into self-dual
and anti-selfdual components:

g 0 1 a, B
) = == [Ya, Nel.
( 0 —ZA,B> 8[7 et N

m On a null surface ¥, there always exists a spinor (* : W — C* and a
spinor-valued two-form n*,, € Q*(# : C?) such that the pull-back of
Y aBab to the null surface is diagonalised into eigenspinors,

YaBgy = L(a"B)ab-

Penrose notation:
m A, B,C,- - = 0,1 transform under the fundamental representation of SL(2, C).
m A',B’,C’,... transform under the complex conjugate representation.

m Indices raised and lowered with skew symmetric e-spinor: £4 = egal?, ¢4 = ¢APup.
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Intrinsic null geometry in terms of 54, and ¢4

m The p-form spinors (naqs, £4) determine entire
intrinsic geometry of /.

m Extrinsic geometry (o, 9, k) encoded into
covariant exterior derivatives of (44, 04,

m There is now an additional U(1)¢ gauge
symmetry.

B The spinors are charged, but all vectors are
U (1) charge neutral (Penrose flag invisible).

vectors and tensors one spinorial object (n4qp, EA)

null generator 09 : gaplotb =0 AN = jpApA
bivectors Eaﬁ =eaNeg EAB?_(, = Z(A'r)B)ab'

scalar Eqb = 2imgMy) Eaqb = —i'I]AablA
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Two notions of area

m Metrical area

_ (0s,05)  g(0s,0)
Area, [] = /%) dsdt\/ (g(at,as) g(c%,f%)')

m Oriented area flux

Area.[€] = —i/ nAEA.
%

B Relative sign distinguishes ingoing from outgoing null boundaries.
m Analogous to the two natural volume elements on the manifold,

1
d'z —det gy = :I:Ieag,wea AP Aet Aet.
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New boundary term for the self-dual action

The boundary spinors enter the action through boundary terms.

m Tetradic Hilbert - Palatini action in the bulk,
i

87G

SulA, e] = / Yag A FAP 4+ ce.
u

®m SL(2,C)-invariant boundary action,

SylAn, 0 = ﬁ /,,”A A D + ce.
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Symplectic potential, boundary conditions

m The variation of the action determines both the equations of motion
and the symplectic potential.

05 = BEOM - 8 + Og.4(9). |

B Qo = Os, + O, + 604

m The symplectic potential acquires an
additional corner term (arising from the
boundary of the null boundary).

Go

Symplectic structure along portion of the null surface:
Or = i [fﬂ(DEA) Adna— (DA m)&zf‘)] + cc.
- Limit ¥ — % returns the symplectic structure of the two radiative modes.

- Limit # — Arg returns the isolated horizon symplectic structure.
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Corner term in the symplectic potential

Covariant pre-symplectic potential for the partial Cauchy surfaces X

Or = [—L nadt + 2 | SapA 6AAB} +ce.
TG g 817G J 5

Poisson brackets at the two-dimensional corner

{naan(2), 0% ()}, = 8miGo5e,, 0% (2, 2).

The area two-form is real only if a constraint is satisfied: vanishing of the
U(1) charge, (all observable are charge neutral)

1
L,[®] = —mécp[nAéA +cc.] =0, Vy:%€ —|[0,2n].
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Phase space, boundary observables
Quasi local observables

diffeomorphisms:  J¢[€] = ﬁ/ [nAzng — cc.], forall ¢*|, € TB.
€

) — __ i A _ _ 1
dilatations*: K\[%] e /% )‘[”Aé CC'] 871G /%)\s'

*S Carlip and C Teitelboim, The Off-shell black hole, Class. Quant. Grav. 12 (1995), arXiv:gr-qc/9312002.

Gauge symmetries (degenerate directions of Qs = §Ox)
m U(1) flag rotations (all observables are charge neutral), L,[€] = 0.
NAab — e_%enAab, A e+L2‘e£A.

m SL(2,C) transformations of the bulk plus boundary fields.
m Bulk diffeomorphisms that vanish at the boundary.
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http://arxiv.org/abs/gr-qc/9312002

Fock quantization of geometry



Inclusion of the Barbero - Immirzi parameter ~

The Barbero - Immirzi parameter « > 0 is a coupling constant in front of
the term e. A eg A F*?, which can be added without changing the
equations of motion. For ~ # 0, we must modify then the boundary
action as well.

m Bulk action

S,,{{[A,e] = S;G[/ﬂ ’Y:y'_l ZAB/\FAB] + cc.

m Boundary action for the null surface

Sx[Aln, ]

A
87rG 7) /\DZ]—i—cc

m Canonical momentum (spinor-valued two-form on the boundary)

i v+i

AT G v 4
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Reality conditions and Poisson brackets

m The Poisson brackets for the boundary variables are
{ma(2),t6(")} = eand®(z,2).

m Generator of complexified U(1)¢ transformations
L=— %‘n Al + ce. (generator of U(1) transformations),
K= —%‘n Al* 4 cc.  (dilatations of the null normal).

m Cross-sectional area is neither L nor K, but

e= —87rGL,7rA€A.
v+l

m For the area to be real-valued, we have to satisfy reality conditions,

e=8< | K—-~vL=0.
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Landau operators

m Poisson brackets in the continuum
{ﬂ'A(z),ZB(z')} = 525(2)(,2, 2.

Strategy: Construct creation and annihilation operators and quantise
them in the continuum

This requires two additional structures:

Fiducial hermitian metric: daar = oaaran®,
Fiducial area element:  d*Q = Q*(9, )sin®¥ d9 A dep.

m Gravitational Landau operators (half densities)

. % [ ']
\/_[\/dz_EA m ﬂA/]

m Poisson brackets

{aA( aB(z)} {b (2), bB(z)} 15A6(2)zz').
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Quantisation of the area flux

m Fock vacuum in the continuum
Vz €€ : aA(z)|{dZQ, na},0) =0,
b (2)|[{d*Q, na}, 0) = 0.
Imposition of the reality conditions:

ﬁ(z) = %[aL(z)aA(z) — bL(z)bA(z)],

K(z) = % [aa(2)b(2) — hel,

[K(2) = 7L(2)] Wpnys = 0.

K is a squeeze operator, L plays the role of intrinsic spin.
Physical states exhibit quantization of area

Are/a,zg]\Ilphys = 47r'yG/ [aLaA - bLbA]\I!phys.
©

m Possible measurement outcomes for cross-sectional area of
8wy hG
83

n

n, 2n¢€Z.
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Conclusions



Comparison with LQG in the bulk

spin network representation boundary Fock representation

phasespace  {E;%, A%} = 81Gy6I676P) () {ma(2),€5(2)} = 6556 (z,2)).
area Areay[€] = / VE;E? Areac (€] = —SFGL. / Al
% v+ilJe

eigenvalues A; =8mGv/j(7+1), 25€Ny a; =8nG~j, 2jEZL

Where does the quantisation of area come from?
m Adding % [ 4 €a Neg A FB to the action does not change the EOMs.

m Introducing v deforms the reality conditions: they contain now also the
generator of U(1) rotations.

® Quantization of area follows then from quantization of the U (1) generators.

20/21



m We started with a heuristic argument: In LQG, the quantum states of
geometry are built from gravitational Wilson lines for the spin connection. If
these Wilson lines hit a boundary, they excite a surface charge, namely a
spinor.

m We then found the classical interpretation for these surface spinors:
The LQG boundary spinors appear already at the classical level as
gravitational edge modes in the Hamiltonian formalism in domains bounded
by null surfaces. The simplest quasi-local observables that can be constructed
from these surface spinors are: (i) tangential diffeomorphisms that preserve
the corners and (ii) dilatations of the null normal.

® Quantisation of area in conventional Fock space: Finally, we quantised
the surface spinors using a conventional Fock representation (keeping the
theory in the bulk classical). Upon introducing the Immirzi parameter, we
reproduced the LQG quantisation of area without ever introducing spin
networks or discretizations of space.
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